研究生: |
黃詩云 Huang, Shih-Yun |
---|---|
論文名稱: |
合成摻雜聚2-氨基苯磺酸之水相分散性聚3,4-乙烯二氧基噻吩及其特性分析 Synthesis and Characterization of Poly(3,4-ethylenedioxythiophene) Doped with Poly(Aniline-2-Sulfonic Acid) Dispersed in Aqueous Media |
指導教授: |
王本誠
Wang, Pen-Cheng |
口試委員: |
林滄浪
Lin, Tsang-Lang 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 導電高分子 、聚2-氨基苯磺酸 、PEDOT 、分散性 、二級摻雜 |
外文關鍵詞: | Conducting Polymer, Poly(Aniline-2-Sulfonic Acid), PEDOT, Dispersion, Secondary Doping |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三種不同的溶劑分別為1M 鹽酸、緩衝溶液,去離子水,兩種氧化劑APS以及KPS以化學氧化合成法合成 PEDOT:PASA,希望藉由PASA具有的磺酸根基團以及身為導電高分子的特性能夠使PEDOT均勻分散在溶液中並同時保有良好的導電性質,期許經由二級摻雜後的PEDOT:PASA能改善傳統商用的PEDOT:PSS的低導電性並進一步取代高分子太陽能電池中ITO透明電極的地位。故此,本實驗分別討論所合成出PEDOT:PASA的分散以及經二級摻雜後的導電特性。
經由SEM影像發現溶液分散性的優劣與所合成出的PEDOT:PASA顆粒大小以及聚集情形有關,顆粒越大越容易沉澱,使用1M鹽酸作為溶劑所合成出 PEDOT:PASA放置一個星期後產生沉澱的情形,其餘兩種溶劑所合成的PEDOT:PASA分散性可長達至6個月以上,證實了PASA中的磺酸根基團與PEDOT間的庫倫作用力達到使溶液具有良好分散性的效果,而APS、KPS均為強氧化劑對PEDOT;PASA不管在分散性、物性分析、導電性上均無差異。
在此實驗中使用甲醇、乙醇、異丙醇、山梨醇,兒茶素、極性溶劑DMSO以及1M的硫酸和鹽酸作為二級摻雜物探討對PEDOT:PASA薄膜導電性的影響,經由實驗數據發現使用乙醇、異丙醇、1M硫酸均可以使PEDOT:PASA薄膜導電率提升五個數量等級,本實驗也利用了SEM、Raman以及XPS作為分析二級摻雜反應機制的依據。
透過化學氧化法合成的PEDOT:PASA在緩衝溶液以及去離子水中不僅有良好的分散性質,同時在二級摻雜後也有數量級導電性的增加,這些特性使我們期待將PEDOT:PASA應用於高分子電池上之表現與潛力。
關鍵字: 導電高分子、聚2-氨基苯磺酸、PEDOT、分散性、二級摻雜
This study is using chemical oxidation to synthesize conductivity polymer poly(3,4-ethylene dioxythiophene) (PEDOT) doped with poly(aniline-2-sulfonic acid) (PASA) by three kinds of solvents and two kinds of oxidant agents. This work discuss the electrical property and the solution dispersibly of PEDOT:PASA.
We found using 1M HCl as solvent to synthesize PEDOT:PASA is less dispersible than Buffer and Deionized water. The one employ HCl can only disperse in solution for one week while Buffer and Deionized water can over six months. The SEM images results show the relation between polymer grain size and solution dispersibly. Larger grains size make worse aggregation of polymer. We also observed there is no different in PEDOT:PASA conductivity and dispersibly among these two strong oxidant agents APS and KPS.
To enhance PEDOT: PASA conductivity, we introduce several secondary dopants such as methanol, ethanol, IPA, sorbitol, catechin, DMSO, 1M H2SO4 and HCl. Among them, Ethanol, IPA, and 1M H2SO4 can significantly improve the PEDOT: PASA conductivity by five orders. This work investigate the mechanism of conductivity enhancement through SEM, Raman and XPS.
We apply simple way to manufacture PEDOT: PASA with good dispersion and electrical properties after secondary doping. We believe these characteristic of PEDOT: PASA show promising potential applications in polymer solar cell.
Keyword: Conducting Polymer; Poly(Aniline-2-Sulfonic Acid); PEDOT; Dispersion; Secondary Doping
[1] D.A. Mengistie, P.-C. Wang, C.-W. Chu, "Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells", Journal of Materials Chemistry A, vol. 1, pp. 9907-9915, 2013.
[2] D.A. Mengistie, M.A. Ibrahem, P.-C. Wang, C.-W. Chu, "Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells", ACS Applied Materials & Interfaces, vol. 6, pp. 2292-2299, 2014.
[3] D.A. Mengistie, C.-H. Chen, K.M. Boopathi, F.W. Pranoto, L.-J. Li, C.-W. Chu, "Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants", ACS Applied Materials & Interfaces, vol. 7, pp. 94-100, 2014.
[4] D.A. Mengistie, "Conductivity Enhacement of PEDOT:PSS and applications for polymer solar cells and thermodelectrics", Thesis of National Tsing-Hua University in department of Eigineering and System Science, pp. 1-115, 2014.
[5] C.K. Chiang, C. Fincher Jr, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, "Electrical conductivity in doped polyacetylene", Physical Review Letters, vol. 39, p. 1098, 1977.
[6] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x", Journal of the Chemical Society, Chemical Communications, pp. 578-580, 1977.
[7] H.S. Nalwa, "Handbook of Organic Conductive Molecules and Polymers, Volume 4, Conductive Polymers: Transport, Photophysics and Applications", 1997.
[8] A.J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture)", Angewandte Chemie International Edition, vol. 40, pp. 2591-2611, 2001.
[9] C. Kittel, J. Wiley, I. Sons, Hoboken, "Introduction to solid state physics", 2005.
[10] P. Saini, M. Arora, "Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on 2 Intrinsically Conducting Polymers, 3 Graphene and Carbon Nanotubes 4", 2012.
[11] A.G. MacDiarmid, " “Synthetic metals”: A novel role for organic polymers (Nobel lecture)", Angewandte Chemie International Edition, vol. 40, pp. 2581-2590, 2001.
[12] S. Roth, W. Graupner, "Conductive polymers: evaluation of industrial applications", Synthetic Metals, vol. 57, pp. 3623-3631, 1993.
[13] J. Gu, S. Gao, Y. Xue, J. Li, C. Wang, Q. Ren, G. Sheng, "Synthesis and characterization of PEDOT aqueous dispersions with sulfonated polyfluorene as a template and doping agent", Reactive and Functional Polymers, vol. 100, pp. 83-88, 2016.
[14] A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter, "PEDOT", Principles and Applications of an Intrinsically Conductive Polymer, 2011.
[15] G. Heywang, F. Jonas, "Poly (alkylenedioxythiophene) s—new, very stable conducting polymers", Advanced Materials, vol. 4, pp. 116-118, 1992.
[16] I. Winter, C. Reese, J. Hormes, G. Heywang, F. Jonas, "The Thermal Aging of Poly(3,4-Ethylenedioxythiophene) - an Investigation by X-Ray-Absorption and X-Ray Photoelectron-Spectroscopy", Chem Phys, vol. 194, pp. 207-213, May 1 1995.
[17] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, "Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future", Advanced Materials, vol. 12, pp. 481-494, 2000.
[18] T. Yamamoto, "PI.-Conjugated Polymers Bearing Electronic and Optical Functionalities. Preparation by Organometallic Polycondensations, Properties, and Their Applications", Bull. Chem. Soc. Jpn., vol. 72, pp. 621-638, 1999.
[19] T. Yamamoto, M. Abla, "Synthesis of non-doped poly (3, 4-ethylenedioxythiophene) and its spectroscopic data", Synthetic Metals, vol. 100, pp. 237-239, 1999.
[20] T. Yamamoto, M. Abla, T. Shimizu, D. Komarudin, B.-L. Lee, E. Kurokawa, "Temperature dependent electrical conductivity of p-doped poly (3, 4-ethylenedioxythiophene) and poly (3-alkylthiophene) s", Polym. Bull., vol. 42, pp. 321-327, 1999.
[21] S. Kirchmeyer, K. Reuter, "Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)", Journal of Materials Chemistry, vol. 15, pp. 2077-2088, 2005.
[22] U. Lang, E. Müller, N. Naujoks, J. Dual, "Microscopical investigations of PEDOT: PSS thin films", Advanced Functional Materials, vol. 19, pp. 1215-1220, 2009.
[23] S. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.D. Van Der Gon, W.R. Salaneck, M. Fahlman, "The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films", Synthetic Metals, vol. 139, pp. 1-10, 2003.
[24] P. Tehrani, A. Kanciurzewska, X. Crispin, N.D. Robinson, M. Fahlman, M. Berggren, "The effect of pH on the electrochemical over-oxidation in PEDOT: PSS films", Solid State Ionics, vol. 177, pp. 3521-3527, 2007.
[25] J.W. Choi, M.G. Han, S.Y. Kim, S.G. Oh, S.S. Im, "Poly (3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions", Synthetic Metals, vol. 141, pp. 293-299, 2004.
[26] J. Ouyang, " “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices", Displays, vol. 34, pp. 423-436, 2013.
[27] A. MacDiarmid, A.J. Epstein, "The concept of secondary doping as applied to polyaniline", Synthetic Metals, vol. 65, pp. 103-116, 1994.
[28] J. Kim, J. Jung, D. Lee, J. Joo, "Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents", Synthetic Metals, vol. 126, pp. 311-316, 2002.
[29] A. Pasha, A.S. Roy, M. Murugendrappa, O.A. Al-Hartomy, S. Khasim, "Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films", Journal of Materials Science: Materials in Electronics, vol. 27, pp. 8332-8339, 2016.
[30] S. Garreau, G. Louarn, J. Buisson, G. Froyer, S. Lefrant, "In situ spectroelectrochemical Raman studies of poly (3, 4-ethylenedioxythiophene)(PEDT)", Macromolecules, vol. 32, pp. 6807-6812, 1999.
[31] J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, "High‐conductivity poly (3, 4‐ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices", Advanced Functional Materials, vol. 15, pp. 203-208, 2005.
[32] F. Jonas, W. Krafft, B. Muys, "Poly (3, 4‐ethylenedioxythiophene): Conductive coatings, technical applications and properties", in Macromolecular Symposia, 1995, pp. 169-173.
[33] G. Wang, Y. Ding, F. Wang, X. Li, C. Li, "Poly (aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility", Journal of Colloid and Interface Science, vol. 317, pp. 199-205, 2008.
[34] D.R. Ulrich, "Multifunctional macromolecular ultrastructures: Introductory Comments Speciality Polymers' 86", Polymer, vol. 28, pp. 533-542, 1987.
[35] H. Bengel, S. Jobic, C. Deudon, J. Rouxel, D.-K. Seo, M.-H. Whangbo, "Scanning tunneling and atomic force microscopy study of the misfit layer compounds (LaS) 1.14 (NbS 2) n (n= 1, 2) and [(Pb, Sb) S)] 1.14 NbS 2", Surface Science, vol. 400, pp. 266-276, 1998.