簡易檢索 / 詳目顯示

研究生: 彭錦嶽
論文名稱: 在超凸度量空間中推廣型KKM定理及其應用
Generalized KKM Theorem on Hyperconvex Metric Spaces and Its Applications
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 19
中文關鍵詞: 超凸度量空間KKM定理同值點定理匹配定理變分不等式大中取小不等式
外文關鍵詞: Hyperconvex metric space, KKM theorem, coincidence theorem, matching theorem, variational inequality, minimax inequality
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用超凸度量空間的性質證明了可允許集的交集性質。利用這個性質,我們證得一個推廣型 定理、一個匹配定理及一個同值點定理。在應用方面,我們利用這個推廣型 定理,證明一些變分不等式及大中取小不等式的存在性定理。


    In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we get a generalized theorem, a matching theorem and a coincidence theorem. As the application, we use this generalized theorem to establish some existence theorems about variational inequalities and minimax inequalities.

    1. INTRODUCTION----------------------------------------5 2. PRELIMINARIES---------------------------------------6 3. MAIN RESULTS----------------------------------------9 4. APPLICATIONS---------------------------------------14 5.REFERENCES------------------------------------------18

    [1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
    [2] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439.
    [3] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
    [4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
    [5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [6] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Ana, to appear.
    [7] X. P. Ding, Y. C. Liou, and J. C. Yao, Generalized R-KKM type theorems in topological spaces with applications, Appl. Math. Letters. 18(2005), 1345-1350.
    [8] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
    [9] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
    [10] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
    [11] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 204(1996),298-306.
    [12] W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39(2000), 611-627.
    [13] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
    [14] J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321(2006), 862-866.
    [15] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37(1999), 467-472.
    [16] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
    [17] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
    [18] N. T. Vinh, Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta. Math. Vietnamica. 30(2005), 211-224.
    [19] X. Wu, B. Thompson, and G. X. Yuan, Fixed point theorems of upper semicontinuous multivalued mappings with applications in hyperconvex metric spaces, J. Math. Anal. Appl. 276(2002), 80-89.
    [20] G. X. Z. Yuan, The Charactreization of Generalized Metric KKM Mappings with Open Values in Hyperconvex Metric Spaces and Some Applications, J. Math. Anal. Appl. 235(1999), 315-325.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE