研究生: |
黃麗榛 Huang, Li-Chen |
---|---|
論文名稱: |
阿拉伯芥生長素轉運蛋白在大腸桿菌之異體表現及其功能性分析 Heterologous expression and characterization of Arabidopsis auxin transporter in E. coli |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: |
潘榮隆
林彩雲 張文綺 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 阿拉伯芥 、生長素轉運蛋白 、大腸桿菌 |
外文關鍵詞: | Arabidopsis, AUX1, E. coli |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物生長素調控植物生長、發育,包括向性、開花、結果、細胞分裂分化等。存在於植物中最多的生長素為吲哚乙酸 (Indole-3-actic acid,IAA),當它在頂芽或根部的分生組織合成後,會運送到植物基部被需要的細胞利用,這個過程稱之為生長素的極性運輸 (Polar auxin transport)。細胞膜鑲嵌的生長素轉運蛋白1 (AUX1 transporter) 在極性運輸的時候,可以藉由氫離子梯度差,被動地將細胞外的吲哚乙酸運送到細胞內。485個胺基酸的AUX1預測擁有11個穿膜區域,其大小為56.8 kDa。目前AUX1的生理研究尚稱充裕,惟缺少由結構生物學、生化學的角度剖析吲哚乙酸藉由AUX1進入細胞的途徑與結合的關係。因此,本研究利用大腸桿菌 (Escherichia coli) 異體表現阿拉伯芥 (Arabidopsis thaliana) 的AUX1,檢測AUX1在大腸桿菌中的表現量並分析有AUX1表現的大腸桿菌細胞攝入吲哚乙酸的情形。用有AUX1在大腸桿菌表現的細胞測試不同溫度、作用時間、pH值、及溶液中吲哚乙酸的濃度,與運送到細胞內吲哚乙酸量的關係,並加入化學抑制劑N-乙基馬來醯亞胺 (N-ethylmaleimide) 抑制有AUX1表現的大腸桿菌細胞,證明AUX1可在大腸桿菌系統中表現及分析其功能。此結果可供未來進一步研究AUX1上胺基酸與其交互作用穩定結構間的關係之分析。
Arnold, K., Bordoli, L., Kopp, J., Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
Barbez, E., Kubes, M., Rolcik, J., Beziat, C., Pencik, A., Wang, B., Rosquete, M.R., Zhu, J., Dobrev, P.I., Lee, Y., Zazimalova, E., Petrasek, J., Geisler, M., Friml, J., Kleine-Vehn, J. (2012). A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119-122.
Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A. (1996). Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273, 948-950.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, doi: 10.1093/nar/gku340.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Bush, D.R. (1993). Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44, 513-542.
Carrier, D.J., Abu Bakar, N.T., Lawler, K., Dorrian, J.M., Haider, A., Bennett, M.J., Kerr, I.D. (2009). Heterologous expression of a membrane-spanning auxin importer: Implications for functional analyses of auxin transporters. Int J Plant Genomics 2009, 848145.
Carrier, D.J., Bakar, N.T., Swarup, R., Callaghan, R., Napier, R.M., Bennett, M.J., Kerr, I.D. (2008). The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol 148, 529-535.
Cazzonelli, C.I., Vanstraelen, M., Simon, S., Yin, K., Carron-Arthur, A., Nisar, N., Tarle, G., Cuttriss, A.J., Searle, I.R., Benkova, E., Mathesius, U., Masle, J., Friml, J., Pogson, B.J. (2013). Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8, e70069.
Davies, C.W., Hoyle, B.E. (1953). 842. The interaction of calcium ions with some phosphate and citrate buffers. J Chem Soc, doi: 10.1039/JR9530004134, 4134-4136.
Ding, Z., Wang, B., Moreno, I., Duplakova, N., Simon, S., Carraro, N., Reemmer, J., Pencik, A., Chen, X., Tejos, R., Skupa, P., Pollmann, S., Mravec, J., Petrasek, J., Zazimalova, E., Honys, D., Rolcik, J., Murphy, A., Orellana, A., Geisler, M., Friml, J. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3, 941.
Ferro, N., Bredow, T., Jacobsen, H.-J., Reinard, T. (2010). Route to novel auxin: Auxin chemical space toward biological correlation carriers. Chem Rev 110, 4690-4708.
Gao, X., Lu, F., Zhou, L., Dang, S., Sun, L., Li, X., Wang, J., Shi, Y. (2009). Structure and mechanism of an amino acid antiporter. Science 324, 1565-1568.
Geisler, M., Blakeslee, J.J., Bouchard, R., Lee, O.R., Vincenzetti, V., Bandyopadhyay, A., Titapiwatanakun, B., Peer, W.A., Bailly, A., Richards, E.L., Ejendal, K.F., Smith, A.P., Baroux, C., Grossniklaus, U., Muller, A., Hrycyna, C.A., Dudler, R., Murphy, A.S., Martinoia, E. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44, 179-194.
Goldsmith, M.H.M. (1977). The polar transport of auxin. Annu Rev Plant Physiol 28, 439-478.
Gong, S., Richard, H., Foster, J.W. (2003). YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185, 4402-4409.
Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., Singh, R.M. (1966). Hydrogen ion buffers for biological research. Biochemistry 5, 467-477.
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38, W695-699.
Guex, N., Peitsch, M.C., Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30 Suppl 1, S162-173.
Guilfoyle, T. (2007). Plant biology: Sticking with auxin. Nature 446, 621-622.
Haferkamp, I., Linka, N. (2012). Functional expression and characterisation of membrane transport proteins. Plant Biol 14, 675-690.
Huang, Y.T., Liu, T.H., Chen, Y.W., Lee, C.H., Chen, H.H., Huang, T.W., Hsu, S.H., Lin, S.M., Pan, Y.J., Lee, C.H., Hsu, I.C., Tseng, F.G., Fu, C.C., Pan, R.L. (2010). Distance variations between active sites of H+-pyrophosphatase determined by fluorescence resonance energy transfer. J Biol Chem 285, 23655-23664.
Jack, D.L., Paulsen, I.T., Saier, M.H. (2000). The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146, 1797-1814.
Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., Schwede, T. (2009). The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37, D387-392.
Kirsch, R.D., Joly, E. (1998). An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26, 1848-1850.
Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., Zazimalova, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10, 249.
Maan, A.C., Kühnel, B., Beukers, J.J.B., Libbenga, K.R. (1985). Naphthylphthalamic acid-binding sites in cultured cells from Nicotiana tabacum. Planta 164, 69-74.
Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C., Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18, 2066-2073.
McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41, W597-600.
Miroux, B., Walker, J.E. (1996). Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260, 289-298.
Mravec, J., Kubes, M., Bielach, A., Gaykova, V., Petrasek, J., Skupa, P., Chand, S., Benkova, E., Zazimalova, E., Friml, J. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135, 3345-3354.
Mravec, J., Skupa, P., Bailly, A., Hoyerova, K., Krecek, P., Bielach, A., Petrasek, J., Zhang, J., Gaykova, V., Stierhof, Y.D., Dobrev, P.I., Schwarzerova, K., Rolcik, J., Seifertova, D., Luschnig, C., Benkova, E., Zazimalova, E., Geisler, M., Friml, J. (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136-1140.
Noh, B., Murphy, A.S., Spalding, E.P. (2001). Multidrug resistance–like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441-2454.
Pandey, R., Swamy, K.V., Khetmalas, M.B. (2013). Indole: A novel signaling molecule and its applications. Indian J Biotechnol 12, 297-310.
Pasquier, C., Promponas, V.J., Palaios, G.A., Hamodrakas, J.S., Hamodrakas, S.J. (1999). A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: The PRED-TMR algorithm. Protein Eng 12, 381-385.
Peret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., James, N., Casimiro, I., Perry, P., Syed, A., Yang, H., Reemmer, J., Venison, E., Howells, C., Perez-Amador, M.A., Yun, J., Alonso, J., Beemster, G.T., Laplaze, L., Murphy, A., Bennett, M.J., Nielsen, E., Swarup, R. (2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24, 2874-2885.
Pinero-Fernandez, S., Chimerel, C., Keyser, U.F., Summers, D.K. (2011). Indole transport across Escherichia coli membranes. J Bacteriol 193, 1793-1798.
Ranocha, P., Dima, O., Nagy, R., Felten, J., Corratge-Faillie, C., Novak, O., Morreel, K., Lacombe, B., Martinez, Y., Pfrunder, S., Jin, X., Renou, J.P., Thibaud, J.B., Ljung, K., Fischer, U., Martinoia, E., Boerjan, W., Goffner, D. (2013). Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun 4, 2625.
Reed, R.C., Brady, S.R., Muday, G.K. (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118, 1369-1378.
Rubery, P.H., Sheldrake, A.R. (1973). Effect of pH and surface charge on cell uptake of auxin. Nat New Biol 244, 285-288.
Rubery, P.H., Sheldrake, A.R. (1974). Carrier-mediated auxin transport. Planta 118, 101-121.
Scanlon, M.J. (2003). The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 133, 597-605.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J.D., Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539.
Stoll, V.S., Blanchard, J.S. (1990). [4] Buffers: Principles and practice. In: Methods Enzymol (Murray, P.D., ed.). Academic Press, 24-38.
Swarup, K., Benkova, E., Swarup, R., Casimiro, I., Peret, B., Yang, Y., Parry, G., Nielsen, E., De Smet, I., Vanneste, S., Levesque, M.P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., Marillonnet, S., Patel, K., Jones, J.D., Taylor, C.G., Schachtman, D.P., May, S., Sandberg, G., Benfey, P., Friml, J., Kerr, I., Beeckman, T., Laplaze, L., Bennett, M.J. (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10, 946-954.
Swarup, R., Kargul, J., Marchant, A., Zadik, D., Rahman, A., Mills, R., Yemm, A., May, S., Williams, L., Millner, P., Tsurumi, S., Moore, I., Napier, R., Kerr, I.D., Bennett, M.J. (2004). Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069-3083.
Swarup, R., Peret, B. (2012). AUX/LAX family of auxin influx carriers-an overview. Front Plant Sci 3, 225.
Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
Teale, W.D., Paponov, I.A., Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7, 847-859.
Terasaka, K., Blakeslee, J.J., Titapiwatanakun, B., Peer, W.A., Bandyopadhyay, A., Makam, S.N., Lee, O.R., Richards, E.L., Murphy, A.S., Sato, F., Yazaki, K. (2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922-2939.
Titapiwatanakun, B., Blakeslee, J.J., Bandyopadhyay, A., Yang, H., Mravec, J., Sauer, M., Cheng, Y., Adamec, J., Nagashima, A., Geisler, M., Sakai, T., Friml, J., Peer, W.A., Murphy, A.S. (2009). ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57, 27-44.
Tromas, A., Paque, S., Stierle, V., Quettier, A.L., Muller, P., Lechner, E., Genschik, P., Perrot-Rechenmann, C. (2013). Auxin-binding protein 1 is a negative regulator of the SCF(TIR1/AFB) pathway. Nat Commun 4, 2496.
Vanneste, S., Friml, J. (2013). Calcium: The missing Llink in auxin action. Plants 2, 650-675.
Verrier, P.J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., Kolukisaoglu, Ü., Lee, Y., Martinoia, E., Murphy, A., Rea, P.A., Samuels, L., Schulz, B., Spalding, E.P., Yazaki, K., Theodoulou, F.L. (2008). Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci 13, 151-159.
Woo, E.J., Marshall, J., Bauly, J., Chen, J.G., Venis, M., Napier, R.M., Pickersgill, R.W. (2002). Crystal structure of auxin‐binding protein 1 in complex with auxin. EMBO J 21, 2877-2885.
Woodward, A.W., Bartel, B. (2005). Auxin: Regulation, action, and interaction. Ann Bot 95, 707-735.
Yang, H., Murphy, A.S. (2009). Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59, 179-191.
Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16, 1123-1127.
Young, G., Jack, D., Smith, D., Saier Jr, M. (1999). The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415, 306-322.
Zazimalova, E., Murphy, A.S., Yang, H., Hoyerova, K., Hosek, P. (2010). Auxin transporters--Why so many? Cold Spring Harb Perspect in Biol 2, a001552.
Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61, 49-64.