簡易檢索 / 詳目顯示

研究生: 范綱志
Kang-Chin Fan
論文名稱: 樹狀結構向量量化的分析
A Tree-Structured Vector Quantization
指導教授: 陳朝欽
Chaur-Chin Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 27
中文關鍵詞: 向量量化碼本生成
外文關鍵詞: Vector Quantization, Codebook Generation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電腦網路的發展,影像資料時常經由網路傳輸,因為影像資料太過龐大,故有效的壓縮成為重要的課題,如此可節省傳輸時間及網路頻寬。向量量化是很有效的影像壓縮演算法,其最大的特點在簡單的解碼器及即時的解壓縮,尤其適合一個編碼器對多個解碼器的應用環境。
    在本論中首先回顧幾種主要的向量量化演算法,並且提出一個可以改良樹狀結構向量量化演算法的方法,應用此方法亦可同時安排碼本中碼向量的順序,排列以後的碼本若用PDS演算法來編碼,可加速其編碼所需之時間。

    我們在DCT-TSVQ及PCA-TSVQ上加入我們的方法,實驗結果顯示應用新的方法確實可以提高壓縮後的影像品質,效果接近LBG演算法,只需多一點碼本生成的時間,也大大加速了編碼所需的時間,大約需原演算法的40%左右,總合時間也少於原演算法所需。此實驗是在Celeron 400配備128MB記憶體的個人電腦執行,改良後的DCT-TSVQ需要大約1.5秒,而改良後的PCA-TSVQ需要約3秒壓縮一張512×512的灰階256色影像。壓縮比為0.625bpp,且得要令人滿意的影像品質。在未來更快速的電腦上,將需更少的時間。


    Vector Quantization (VQ) is an efficient technique for image compression. A new fast VQ scheme, called DCT-VQ, based on a two-dimensional discrete cosine transform (2-D DCT) is presented. The significant features of training images are extracted by using the 2-D DCT. A codebook is generated by partitioning the training set into a binary tree. Each training vector at a nonterminal node of the binary tree is distributed to one of the two descendants by comparing a single feature associated with that node to a threshold. A modified scheme based on DCT-VQ is proposed. It partitions the training data into a binary tree according to the distribution of training vectors. Experimental results show that the new scheme results in a better codebook

    題要 誌謝 第一章 緒論…………………………………………………… 1 第二章 向量量化之回顧……………………………………… 2 第三章 依訓練資料的機率分佈而成的樹狀結構向量量化演算法…………………………………………………… 3 第四章 實驗結果……………………………………………… 4 第五章 結論…………………………………………………… 5 附 錄

    [Ahm74] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. on Computers, vol. 23, 90-93, 1974.
    [And76] H. C. Andrews and C. L. Patterson, “Singular Value Decomposition (SVD) Image Coding,” IEEE Trans. on Comm., vol. 24, 425-433, 1976.
    [And84] T. W. Anderson, An Introduction to multivariate statistical analysis, Wiley, New York, 1984.
    [Ant92] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image Coding Using Wavelet Transform,” IEEE Trans. on Image Processing, vol. 1, 1992.
    [Ara87] R. Aravind and A. Gersho, “Image Compression Based on Vector Quantization with Finite Memory,” Optical Engineering, vol. 26, 570-580, 1987.
    [Bar93] M. F. Barnsley and L. P. Hurd, Fractal Image Compression, Wellesley, AK Peters, 1993.
    [Bei85] C. D. Bei and R. M. Gray. “ An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization”, IEEE Trans. on Comm., vol. 33, 1132-1133, 1985.
    [Buz80] A. Buzo et al., “Speech coding based upon vector quantization”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, 562-574, Oct. 1980
    [Che77] W. H. Chen, C. Harrison Smith, and S. C. Fralick, “A Fast Computational Algorithm for the Discrete Cosine Transform,” IEEE Trans. on Comm. vol. Com-25, no. 9, pp 1004-1010, Sep. 1997.
    [Dev82] P. A. Devijver and J. Kittler, Pattern Recognition: A statistical approach, Prentice-Hall, 1982.
    [Equ89] W. H. Equitz, “A New Vector Quantization Clustering Algorithm,” IEEE Trans. on ASSP, vol. 37, 1568-1575, 1989.
    [Fla89] J. K. Flanagan, D. R. Morrell, R. L. Frost, C. J. Read, and B. E. Nelson, “Vector Quantization Codebook Generation Using Simulated Annealing,” IEEE ICASSP, 1759-1762, 1989.
    [Fos85] J. Foster, R. M. Gray, and M. O. Dunham, “Finite-State Vector Quantization for Waveform Coding,” IEEE Trans. on Info. Theory, vol. IT-31, 348-359, 1985.
    [Gol89] G. H. Golub and F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1989.
    [Gra84] R. M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1, 4-29, 1984.
    [Gua92] L. Guan and M. Kamel, “Equal-average hyperplane partitioning method for vector quantization of image data,” Pattern Recognition Letters, vol. 13, 693-699, 1992
    [Hsi92] C. H. Hsieh, “DCT-Based codebook design for vector quantization of images,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 2, 401-409, 1992.
    [Jai88] A. K. Jain and R. C. Dubes, Algorithm for Clustering Data, Prentice-Hall, New York, 1988.
    [Jai89] A. K. Jain, Fundamental of Digital Image Processing, Prentice-Hall, New York, 1989.
    [Kau98] T. Kaukoranta, P. Franti and O. Nevalainen, “A New Iterative algorithm for VQ Codebook Generation”, International Conference on Image Processing, 1998. Proceedings, vol. 2, 589 -593
    [Kau99] T. Kaukoranta, P. Franti and O. Nevalainen, “Reduced comparison search for the exact GLA”, Data Compression Conference, 1999. Proceedings, 33 -41
    [Kim88] T. Kim, “New finite state vector quantizers for images,” IEEE ICASSP, 1180-1183, 1988.
    [Kim91] D. S. Kim and S. U. Lee, “Image Vector Quantizer Based on a Classification in the DCT Domain,” IEEE Trans. on Comm. vol. 39, 549-556, 1991.
    [Lin80] Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantizer Design,” IEEE Trans. on Comm., vol. 36, 84-95, 1980.
    [Liz99] Liza Jo and M. R. Kaimal, “A Fast Second-Generation Encoding algorithm for Vecotor Quantization”, IEEE Signal Processing Letters. Vol. 6, NO. 11, 277-280, Nov. 1999.
    [Mak85] J. Makhoul et al., “Vector Quantization in Speech Coding,” Proc. IEEE, vol. 73, 1551-1558, Nov. 1985.
    [Nas88] N. M. Nasrabadi and R. A. King, “Image Coding Using Vector Quantization: A Review,” IEEE Trans. on Comm., vol. 36, 957-971, 1988.
    [Nas90a] N. M. Nasrabadi and Y. Feng, “Image Compression Using Address-vector Quantization,” IEEE Trans. on Comm., vol. 38, 2166-2173, 1990.
    [Nas90b] N. M. Nasrabadi and Y. Feng, “A Multilayer Address Vector Quantization Technique,” IEEE Trans. on Circuit and Systems, vol. 37, 912-921, 1990.
    [Nga92] K. N. Ngan and H. C. Koh, “Predictive Classified Vector Quantization,” IEEE Trans. on Image Process, vol. 1, 269-280, 1992.
    [Orc91] M. T. Orchard, “A Fast Nearest-Neighbor Search Algorithm,” IEEE ICASSP, 2297-2230, 1991.
    [Ots79] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. on Systems, Man, and Cybernetics 9, 62-66, 1979.
    [Pal89] K. K. Paliwal and V. Ramasubramanian, “Effect of Ordering the Codebook on the Efficiency of Partial Distance Search Algorithm for VQ,” IEEE Trans. on Comm., vol. 37, 538-540, 1989.
    [Pen93] W. B. Pennebaker and J. H. Mitchell, JPEG Still Image Data Compression Standard, New York, Van Norstrand Reinhold, 1993.
    [Ram86] B. Ramamurthi and A. Gersho, “Classified Vector Quantization of Images,” IEEE Trans. On Comm., vol. 34, 1105-1115, 1986.
    [Sol87] M. E. Soleymani and S. D. Morgera, “An efficient nearest neighbor search method,” IEEE Trans. on Comm., vol. 35, 677-679, 1987.
    [Tor94] L. Torres and J. Huguest, “An improvement on codebook search for vector quantization,” IEEE Trans. on Comm., vol. 42, 208-210, 1994.
    [Vai88] J. Vaisey and A. Gersho, “Simulated Annealing and Codebook Design,” IEEE ICASSP, 1176-1179, 1988.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE