研究生: |
鄭勝勻 |
---|---|
論文名稱: |
金-石墨烯電組裝混成電極開發及其應用於低濃度多巴胺檢測 Electrically-Assisted Assembly of Hybrid Gold-Graphene Electrodes and Their Application in Sensing of Dopamine at Low Concentrations |
指導教授: | 洪健中 |
口試委員: |
陳甫州
朱一民 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 電沉積 、三維結構 、混成電極 |
外文關鍵詞: | electrodeposition, three-dimensional nanostructure, hybrid electrode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用電沉積的方式組裝奈米材料金粒子以及石墨烯於電極上,藉此方式開發出具三維結構之電極,三維結構的形成能增加電極的工作表面積,並佐以生醫微機電技術整合製作一微流道感測晶片,應用於多巴胺的感測上,期望藉由此高靈敏性的電極能夠在低濃度的環境下達到檢測的目的。
在電沉積組裝奈米材料的製程上,本研究對於金粒子及石墨烯兩種材料的沉積參數做了一系列的探討,對於金粒子的沉積其參數探討電壓、頻率以及時間,而石墨烯則探討其表面改質之活性劑以及沉積時間,在得到這兩種材料的最佳化沉積參數後,再混成沉積這兩種材料,由於金粒子能夠形成高深寬比的三維結構型態,石墨烯片狀的堆疊,結合這兩者的特點所得到的混成電極,將其與金粒子以及石墨烯電極作為對照比較,藉由表面型態、厚度、電性、阻抗以及附著性的探討得知電極的資訊,結果得知金-石墨烯混成電極有較好的特性。
將所開發三維結構之高靈敏感測器其應用於多巴胺的檢測上,由實驗的結果得知有金粒子沉積的電極因三維結構增加表面積大幅的關係,感測訊號電流與未修飾的裸金電極相比可增加約70倍;而濃度感測上則得知有石墨烯沉積在電極的最外層對於多巴胺有較好的感測結果,主要是因為石墨烯與多巴胺的苯環結構能夠產生π-π相互作用,藉此捕捉住多巴胺分子,且金-石墨烯混成電極因石墨烯沉積在金粒子所形成的高深寬比三維結構中,相比於沉積在平坦的裸金電極上能夠更大幅度地沉積,因此感測結果較石墨烯電極的要來的好,而感測的線性區間為2至20 ppb,偵測極限為2 ppb。
本研究所開發之金-石墨烯電組裝混成電極經由三維結構的形成而增加電極的工作表面積,除了對於生醫感測上能增加靈敏性外,對於電極的介面需要增加表面積來強化效能特性的燃料電池、超級電容器等也都具有應用的潛力。
In this research, a hybrid electrode with three-dimensional nanostructures has been developed, fabricated, and characterized. The nanogold and graphene were assembled on electrodes by electrodeposition to form three-dimensional nanostructures that increased surface area of working electrodes. Finally, microfluidic chips with the developed electrodes have been applied for sensing of dopamine at low concentrations.
In this research, the deposition parameters of nanogold and graphene, such as voltage, frequency, time, and surfactant, have been investigated and optimized systematically. The developed technology takes advantage of porous nanostructures, which are formed by gold nanoparticles. Then, graphene are deposited layer by layer on the gold nanoparticles to make the hybrid electrodes. By the measurements of surface morphology, thickness, electric property, resistance, and adherence, we can prove that the gold-graphene hybrid electrode has better characteristics than pure nanogold electrode and pure graphene electrode.
According to the experimental results, the sensing currents increase about 70 times, because the surface area of nanogold deposited electrode substantial increase by the fabricated three-dimensional nanostructures. In dopamine detection, due to π-π interaction between phenyl structure of dopamine and two-dimensional planar hexagonal carbon structure of graphene, dopamine can be captured on the electrode surface. In addition, the sensing results of gold-graphene hybrid electrode are better than the graphene electrode due to the increased surface area. The limit of detection is 2 ppb, and linear range is 2 to 20 ppb.
The gold-graphene hybrid electrode has larger working surface area by formation of three-dimensional nanostructures. In future, the developed technology could be applied to fuel cells and supercapacitors.
[1] A. Manz, N. Gtaber, H. M. Widmer, “ Miniaturized total chemical analysis systems: a novel concept for chemical sensing”, Sensors and Actuators B, Chemical, 1, 244-248, 1990.
[2] F. B. Myers, L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics”, Lab on a Chip, 8, 2310-2031, 2008.
[3] P. Liu, T. S. Seo, N. Beyor, K. J. Shin, J. R. Scherer, R. A. Mathies, “Integrated Portable Polymerase Chain Reaction-Capillary Electrophoresis Microsystem for Rapid Forensic Short Tandem Repeat Typing”, Anal. Chem., 79, 1881-1889, 2007.
[4] D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeldb, A. K. Singha, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus”, Lab on a Chip, 8, 1391-1324, 2008.
[5] X. Fan, I. M. White, S. I. Shopova, H Zhu, J. D. Suter, “Sensitive Optical Biosensors For Unlabeled Targets: A Review”, Analytica Chimica Acta, 620, 8–26, 2008.
[6] K. Hegnerová, M. Bocková, H. Vaisocherová, Z. Krisˇtofiková, J. Rˇ ícˇny´ , D. Rˇ ípová, J. Homolaa, “Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker”, Sensors and Actuators B,139, 69–73, 2009.
[7] Li Wang, Tao Li, Yan Du, Chaogui Chen, Bingling Li, Ming Zhou, Shaojun Dong, “Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions”, Biosensors and Bioelectronics, 25 , 2622–2626, 2010.
[8] B. J. Jeon, M. H. Kim And J. C. Pyun, Application Of A Functionalized Parylene film As A Linker Layer Of SPR Biosensor”, Sensors And Actuators B,2010.
[9] Zhihua Ying, Yadong Jiang , Xiaosong Du, Guangzhong Xie, Junsheng Yu , Hua Wang, PVDF coated quartz crystal microbalance sensor for DMMP vapor detection”, Sensors and Actuators B, 125, 167–172, 2007.
[10] R. Say, A. Gültekin, A. Atılır Özcan, A. Denizli, A. Ersöz, “Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2-deoxyguanosine determination”, Analytica Chimica Acta, 640, 82–86, 2009.
[11] Leland C. Clark, Jr., And Champ Lyons, “Electrode Systems For Continuous Monitoring In Cardiovascular Surgery”, Annals New York Academy Of Sciences, 102, 29-45, 1962.
[12] D. D. Macdonald, “Reflections On The History Of Electrochemical Impedance Spectroscopy”, Electrochimica Acta, 51, 1376–1388, 2006.
[13] Chung-Ming Wu,”Development of Capillary Electrophoresis Mircochip with Conductometric Method for Rapid Detection of Metal Ions”,2007.
[14] David W. Inglis, Ewa M. Goldys, and Nils P. Calander, ” Simultaneous Concentration and Separation of Proteins in a Nanochannel’, Angew. Chem , 123, 7688 –7692, 2011.
[15] D. G. Sanderson, L. B. Anderson, "Filar Electrodes: Steady-State Currents and Spectroelectrochemistry at Twin Interdigitated Electrodes ", Analytical Chemistry, 57, 2388–2393, 1985.
[16] J. S. Shim, Michael J Rust and Chong H Ahn,"A large area nano-gap interdigitated electrode array on a polymer substrate as a disposable nano-biosensor",J. Micromech. Microeng, 23, 035002-035007, 2013.
[17] L. Andersson, G. Sellergren And K. Mosbach, “Imprinting Of Amino Acid Derivatives In Macroporous Polymers”, Tetrahedron Letter, 25, 5211-5214, 1984.
[18] H. Li, Z. Wang, B. Wu, X. Liu, Z. Xue, X. Lu,"Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor", Electrochimica Acta, 62, 319-326, 2012.
[19] F. Jia, C. Yu, Z. Ai, L. Zhang, “Fabrication of Nanoporous Gold Film Electrodes with Ultrahigh Surface Area and Electrochemical Activity”, American Chemical Society, 19, 3648-3653, 2007.
[20] Y. Xie, L. Zhou, H. Huang, “Bioelectrocatalytic application of titania nanotube array for molecule detection”, Biosensors and Bioelectronics, 22,. 2812-2818, 2007.
[21] B. Seo, J. Kim, “Electrooxidation of Glucose at Nanoporous Gold Surfaces: Structure Dependent Electrocatalysis and Its Application to Amperometric Detection”, Electroanalysis, vol.22, pp. 939-945, 2010.
[22] L. Guo, G. Chen,and D. H. Kim, “Three-Dimensionally Assembled Gold Nanostructures for Plasmonic Biosensors”, Anal. Chem, 82, 5147–5153, 2010.
[23] Y. Liu, Y. Liu, H. Feng, Y. Wu, L. Joshi, X. Zeng, J. Li, “Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay”, Biosensors and Bioelectronics, 35, 63– 68, 2012.
[24] Rory Harrington," EU hails ground-breaking nano definition", 2011.
<http://www.foodproductiondaily.com/Safety-Regulation/EU-hails-ground-breaking-nano-definition>
[25] U. Kreibig, M. Vollmer, ”Optical Properties of Metal Clusters”, Springer, New York, 1995.
[26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 666-669,2004.
[27] H. Chen, M. B. M. ller, K. J. Gilmore, G. G. Wallace, and . Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper”, Adv. Mater, 20, 3557–3561,2008.
[28] 簡宏認,”金-奈米碳管混成電極之實驗室微晶片平台及其應用於抗生素藥物奈米膠囊長期釋放檢測”,碩士論文,新竹,國立清華大學動力機械系,2011.
[29] 黃淑娟,郭信良,劉易昌,葉裕洲,”石墨烯材料與應用技術專題”,工業材料雜誌,第291期,92-123頁,2011。
[30] X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. Lim Maria, Y. Yang, H. Zhang, H. H. Hng, and Q. Ya,” Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes”, Nano Res, 9, 643-652, 2010.
[31] B. Seo, J. Kim,"Electrooxidation of Glucose at Nanoporous Gold Surfaces:Structure Dependent Electrocatalysis and Its Application to Amperometric Detection", Electroanalysis, 22, 939-945,2010.
[32] H. Schlicke, J. H Schroder, M. Trebbin, A. Petrov, M. Ijeh, H. Weller and T. Vossmeyer, ”Freestanding films of crosslinked goldnanoparticles prepared via layer-by-layer spin-coating”, Nanotechnology, 22, 305-303, 2011.
[33] X. Hu, Q. He, H. Lu, H. Chen,” Fabrication of gold microelectrodes on polystyrene sheets by UV-directed electroless plating and its application in electrochemical detection”, Journal of Electroanalytical Chemistry, 638, 21–27, 2010.
[34] R. K. Sarvestani and J. D. Williams,"Frequency-Dependent Control of Grain Size in Electroplating Gold for Nanoscale Applications",Electrochemical and Solid-State Letters, 13 37-39,2010.
[35] S. Cherevko, C. H. Chung,” Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution”, Electrochemistry Communications, 13, 16–19, 2011.
[36] G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene”, J. Mater. Chem, 20, 7864–7869, 2010.
[37] S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, “High Mobility, Printable, and Solution-Processed Graphene Electronics”, Nano Lett., 10, 92-98, 2010.
[38] M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L. M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, “Soft Transfer Printing of Chemically Converted Graphene”, Adv. Mater, 21, 2098–2102, 2009.
[39] L. Song, L. Ci, W. Gao and P. M. Ajayan, “Transfer Printing of Graphene Using Gold Film”, ACS Nano, 3 , 1353–1356, 2009.
[40] M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. Wang, and S. J. Dong, “Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films”, Chem. Eur. J ,15, 6116-6120, 2009.
[41] Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, “Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition”, Adv. Mater, 21, 1756–1760, 2009.
[42] L. H. Tang, H. B. Feng, J. S. Cheng and J. G. Li, “Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensingw”, Chem. Commun, 46, 5882–5884, 2010.
[43] F. F. Reuss, “Notice sur un nouvel effect de l’´electricit´e galvanique”, M´emoire Soc. Sup. Imp. de Moscou, 1809.
[44] A. Sussman and T. J. Ward, “Electropheretic Deposition of Coatings from Glass-Isopropanol Slurries”, RCA Review, 42, 178-197 , 1981.
[45] B. B. Gao, G. Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, O. Zhou, “Fabrication and Electron Field Emission Properties of Carbon Nanotube Films by Electrophoretic Deposition”, Advanced Materials, 13, 1770-1773, 2001.
[46] Murat Alanyalıog˘lu, Juan Jose` Segura, Judith Oro´ -Sole`, Nieves Casan˜-Pastor, “The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes“, CARBON , 50, 142– 152, 2012.
[47] Kai Zhang, Lu Mao, Li Li Zhang, Hardy Sze On Chan, Xiu Song Zhaoand Jishan Wu “Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes “, J. Mater. Chem. , 21, 7302–7307, 2011.
[48] Shaojun Guo, Dan Wen, Yueming Zhai, Shaojun Dong, and Erkang Wang,"Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot,Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing",ACS Nano, 4, 3959–3968, 2010.
[49] Sheng Zhang, Yuyan Shao, Honggang Liao, Mark H. Engelhard, Geping Yin, and Yuehe Lin,"Polyelectro lyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets", ACS Nano, 5, 1785-1791, 2011.
[50] Shuangyin Wang, Xin Wang and San Ping Jiang,"Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells", Phys. Chem. Chem. Phys.,13,6883-6891, 2011.
[51] C. M. Thompson, J. H. Capdevila and H. W. Strobel,"Recombinant Cytochrome P450 2D18 Metabolism of Dopamine and Arachidonic Acid",J Pharmacol Exp Ther., 294,1120-30,2000.
[52] Piero Zanello, "Inorganic Electrochemistry: Theory, Practice and Applications", Royal Society of Chemistry, 2013.
[53] C. C. Hong, C. Y. Wang, K. T. Peng, I. M. Chu, “A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules”, Biosensors and Bioelectronics,26, 3620-3626, 2011.
[54] Suchocki, John. "Conceptual Chemistry:Understanding Our World of Atoms and Molecules”, Addison Wesley: San Francisco, California, 2001.
[55] Abbott A. “Neuroscience: the molecular wake-up call”, Nature, 447 , 368–70, 2007 .
[56] A. Hunter and Jeremy K. M. Sanders,” The Nature of T-T Interactions”, J. Am. Chem. SOC., 112, 5525-5534, 1990.
[57] J. J. Li, Y. W. Ma, X. Jiang, X. M. Feng, Q. L. Fan, and W. Huang, "Graphene/Carbon Nanotube Films Prepared by Solution Casting for Electrochemical Energy Storage", IEEE Transactions on nanotechnology, 11, 3-7, 2012.
[58] X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang and P. Chen,” 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing”, ACS Appl. Mater. Interfaces, 4, 3129−3133, 2012.
[59] H. Gao, Y. Wang, F. Xiao, C. B. Ching, and H. Duan, "Growth of Copper Nanocubes on Graphene Paper as Free-Standing Electrodes for Direct Hydrazine Fuel Cells", J. Phys. Chem., 116, 7719-7725, 2012.
[60] B. G. Choi, M. Yang, W. H. Hong, J. W. C. and Y. S. Huh, "3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities", ACS Nano, 6, 4020-4028, 2012.
[61] N. Maouche, M. Guergouri, S. Gam-Derouich, M. Jouini, B. Nessark,M. M. Chehimi, "Molecularly imprinted polypyrrole films: Some key parameters for electrochemical picomolar detection of dopamine", Journal of Electroanalytical Chemistry, 685, 21-27, 2012.
[62] MLA style: "Physiology or Medicine for 2000 - Press Release". Nobelprize.org. Nobel Media AB 2013. Web. 5 Aug 2013. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
[63] Hiroshi Kawasaki, Kenji Mizuseki1, Satomi Nishikawa, Satoshi Kaneko, Yoshihisa Kuwana, Shigetada Nakanishi, Shin-Ichi Nishikawa, Yoshiki Sasai, “Induction of Midbrain Dopaminergic Neurons from ES Cells by Stromal Cell–Derived Inducing Activity”, Neuron, 28, 31–40, 2000.
[64] F. M. Vaccarino, A. E. Urban, H. E. Stevens, A. Szekely, A. Abyzov, E. L. Grigorenko, M. Gerstein and S. Weissman, “Annual research review: the promise of stem cell research for neuropsychiatric disorders”, Journal of Child Psychology and Psychiatry, 52, 504-516, 2011.
[65] H. W. Wu, C. C. Lin and G. B. Lee, “Stem cells in microfluidics”, Biomicrofluidics, 5, 013401, 2011
[66] Ying Wang, Yueming Li, Longhua Tang, Jin Lu, Jinghong Li, “Application of graphene-modified electrode for selective detection of dopamine”, Electrochemistry Communications, 11, 889–892, 2009.
[67] Kathleen Van de Velde, Paul Kiekens, "Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR", Carbohydrate Polymers, 58, 409-416, 2004.
[68] H. Ringertz, "The molecular and crystal structure of uric acid", Acta Cryst, 20, 397-403, 1966.
[69] J. Hvoslef, "The crystal structure of L-ascorbic acid, `vitamin C'. I. The X-ray analysis", Acta Cryst, 24, 23-35, 1968.