簡易檢索 / 詳目顯示

研究生: 李翊榮
Lee, Yi-Zong
論文名稱: 利用NMR 技術及ROSETTA 計算方法研究內含蛋白之相關結構
Structure determination of split INTEIN by NMR and structure prediction of native INTEIN by ROSETTA
指導教授: 蘇士哲
Sue, Shih-Che
口試委員: 黃太煌
陳金榜
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 65
中文關鍵詞: 內含蛋白ROSETTA
外文關鍵詞: INTEIN, ROSETTA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物巨分子中,核磁共振技術(NMR, Nuclear Magnetic Resonance)常被用來測量蛋白質的結構。然而,核磁共振技術卻因分子太大縮短了自由感應衰減(FID, free induction decay),造成了傅立葉轉換(FT, Fourier Transform)後的半高寬上升,使得光譜的訊雜比變差。在過去十年間,核磁共振領域發展出利用分離式內含蛋白(split INTEIN)將蛋白質做部分片段的同位素標定,再利用核磁共振原理進行蛋白質結構的特性測量。因此,分離式內含蛋白在這項技術中扮演重要的角色。在這篇論文中,我們選擇有較高蛋白反式剪接(PTS, Protein trans-splicing)反應效率的Nostoc punctiforme (Npu) DnaE內含蛋白做為研究對象。然而,在過去的蛋白質資料庫(PDB, Protein Data bank),沒有任何的分離式內含蛋白的結構,並發現原本的Npu DnaE 內含蛋白因第一個半胱胺酸(Cysteine)被置換成丙胺酸(Alanine)而喪失蛋白反式剪接反應。然而,有功能的分離式內含蛋白的結構能夠使我們了解到分離式內含蛋白在蛋白反式剪接反應過程前後結構的運動方式以及反應介面的反應變化。因此,我們設計出一套可快速且簡潔的方式進行具有功能的分離式內含蛋白的純化,再利用傳統的核磁共振技術計算內含蛋白的結構,並運用ROSETTA結合少量的核磁共振數據,快速且準確的預測完整內含蛋白的結構。


    Nuclear magnetic resonance (NMR) is used to determine protein structure in solution. The potential application is usually restricted by the presence of severe line broadening and resonance overlapping in a macromolecule. In the past decade, scientists widely used the strategy of segmental isotope labeling to overcome the problem. By employing split INTEIN to mediate protein trans-splicing (PTS), we can solve the problem by labeling one domain and leaving the other domain unlabeled. There is still no available split INTEIN structure in Protein Data Bank. Therefore, we reported the first solution structure of split INTEIN here. We developed a streamlined method to simply and quickly prepare Npu DnaE split INEIN and used NMR method to determine the solution structure. The demonstrated structure revealed differences to native INTEIN. It helps us to evaluate the interaction within the enzymatic site including the critical residues and the N- and C-terminus. Meanwhile, it might provide structural basis in understanding structural difference before and after PTS reaction. We also setup CS-ROSETTA system to allow us quickly predict the correct fold of native INTEIN based on very limited NOEs constraints. The strategy can dramatically curtail the time of structure determination and meanwhile, compromise the usage between conventional NMR structure determination and computer simulation.

    謝 誌 中 文 摘 要 Abstract Introduction Protein splicing The chemical mechanism of protein splicing Split INTEIN and protein trans-splicing (PTS) Npu DnaE INTEIN Structural determination of split INTEIN ROSETTA Protein structure prediction The low-resolution and high-resolution structural prediction Using NMR experimental data to improve prediction The strategies of using chemical shift information in CS-ROSETTA The prediction of target protein Materials and methods In-vitro preparation of split INTEIN 102 (NISP102) In-vivo preparation of split INTEIN 102 (NICPSP102) Solution structure of split INTEIN determined by NMR Structure predicted by ROSETTA Results Structural similarity between NISP102 and NICPSP102 The resonance assignments Structure calculated by CYANA Chemical shift difference between NISP102 and NIC1G Structure difference between NISP102 and one-fragment INTEIN The thermal stability different between NIC1G and NISP102 INTEIN The test of ROSETTA and CS-ROSETTA Using CS-ROSETTA to predict Npu DnaE INTEIN NIC1A Using CS-ROSETTA with HN to HN NOEs to predict Npu DnaE INTEIN NIC1A Discussions Chemical shift difference between NIC1G and NISP102 Structure difference between NIC1G and NISP102 ROSETTA Structure predication and traditional NMR method Conclusion References

    1. Starokadomskyy PL (2007) Protein splicing. Mol Biol+ 41(2):278-293.
    2. Liu XQ (2000) Protein-splicing intein: Genetic mobility, origin, and evolution. Annu Rev Genet 34:61-76.
    3. Bowman EJ, Tenney K, & Bowman BJ (1988) Isolation of Genes Encoding the Neurospora Vacuolar Atpase - Analysis of Vma-1 Encoding the 67-Kda Subunit Reveals Homology to Other Atpases. Journal of Biological Chemistry 263(28):13994-14001.
    4. Perler FB (2002) InBase: The Intein Database. Nucleic acids research 30(1):383-384.
    5. Anraku Y, Mizutani R, & Satow Y (2005) Protein splicing: Its discovery and structural insight into novel chemical mechanisms. Iubmb Life 57(8):563-574.
    6. Brenzel S, Kurpiers T, & Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: Biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45(6):1571-1578.
    7. Muona M, Aranko AS, Raulinaitis V, & Iwai H (2010) Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nature protocols 5(3):574-587.
    8. Li J, Sun WC, Wang B, Xiao X, & Liu XQ (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19(9):958-964.
    9. Xu R, Ayers B, Cowburn D, & Muir TW (1999) Chemical ligation of folded recombinant proteins: Segmental isotopic labeling of domains for NMR studies. Proceedings of the National Academy of Sciences of the United States of America 96(2):388-393.
    10. Skrisovska L, Schubert M, & Allain FHT (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. Journal of biomolecular NMR 46(1):51-65.
    11. Goto NK & Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struc Biol 10(5):585-592.
    12. Wu H, Hu ZM, & Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proceedings of the National Academy of Sciences of the United States of America 95(16):9226-9231.
    13. Iwai H, Zuger S, Jin J, & Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Letters 580(7):1853-1858.
    14. Oeemig JS, Aranko AS, Djupsjobacka J, Heinamaki K, & Iwai H (2009) Solution structure of DnaE intein from Nostoc punctiforme: Structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Letters 583(9):1451-1456.
    15. Shingledecker K, Jiang SQ, & Paulus H (2000) Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Arch Biochem Biophys 375(1):138-144.
    16. Raman S, et al. (2010) NMR Structure Determination for Larger Proteins Using Backbone-Only Data. Science 327(5968):1014-1018.
    17. Rohl CA & Baker D (2002) De novo determination of protein backbone structure from residual dipolar couplings using rosetta. Journal of the American Chemical Society 124(11):2723-2729.
    18. Warner LR, et al. (2011) Structure of the BamC Two-Domain Protein Obtained by Rosetta with a Limited NMR Data Set. Journal of Molecular Biology 411(1):83-95.
    19. Simons KT, Bonneau R, Ruczinski I, & Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins-Structure Function and Bioinformatics:171-176.
    20. Kuhlman B, et al. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364-1368.
    21. Bowers PM, Strauss CEM, & Baker D (2000) De novo protein structure determination using sparse NMR data. Journal of biomolecular NMR 18(4):311-318.
    22. Alexander N, Bortolus M, Al-Mestarihi A, Mchaourab H, & Meilerl J (2008) De novo high-resolution protein structure determination from sparse spin-labeling EPR data. Structure 16(2):181-195.
    23. Bradley P, Misura KMS, & Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868-1871.
    24. Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, & Meiler J (2010) Practically Useful: What the ROSETTA Protein Modeling Suite Can Do for You. Biochemistry 49(14):2987-2998.
    25. Das R & Baker D (2008) Macromolecular modeling with Rosetta. Annu Rev Biochem 77:363-382.
    26. DiMaio F, et al. (2011) Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 473(7348):540-U149.
    27. Bystroff C, Simons KT, Han KF, & Baker D (1996) Local sequence-structure correlations in proteins. Curr Opin Biotech 7(4):417-421.
    28. Rohl CA, Strauss CEM, Misura KMS, & Baker D (2004) Protein structure prediction using rosetta. Method Enzymol 383:66-+.
    29. Raman S, et al. (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins-Structure Function and Bioinformatics 77:89-99.
    30. Leaver-Fay A, Kuhlman B, & Snoeyink J (2005) Rotamer-pair energy calculations using a trie data structure. Allgorithms in Bioniformatics, Proceedings 3692:389-400.
    31. Bonneau R, et al. (2002) De novo prediction of three-dimensional structures for major protein families. Journal of Molecular Biology 322(1):65-78.
    32. Simons KT, Kooperberg C, Huang E, & Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology 268(1):209-225.
    33. Simons KT, et al. (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins-Structure Function and Genetics 34(1):82-95.
    34. Lazaridis T & Karplus M (1999) Effective energy function for proteins in solution. Proteins-Structure Function and Genetics 35(2):133-152.
    35. Dunbrack RL & Karplus M (1993) Backbone-Dependent Rotamer Library for Proteins - Application to Side-Chain Prediction. Journal of Molecular Biology 230(2):543-574.
    36. Cornilescu G, Delaglio F, & Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of biomolecular NMR 13(3):289-302.
    37. Rohl CA (2005) Protein structure estimation from minimal restraints using rosetta. Nuclear Magnetic Resonance of Biological Macromolecules, Part C 394:244-260.
    38. Shen Y, et al. (2008) Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences of the United States of America 105(12):4685-4690.
    39. Shen Y, Vernon R, Baker D, & Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. Journal of biomolecular NMR 43(2):63-78.
    40. Zhang XH, Chen LQ, Bancroft DP, Lai CK, & Maione TE (1994) Crystal-Structure of Recombinant Human Platelet Factor-4. Biochemistry 33(27):8361-8366.
    41. Muller-Dieckmann HJ, Grantz AA, & Kim SH (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Struct Fold Des 7(12):1547-1556.
    42. Kay LE, Ikura M, Tschudin R, & Bax A (2011) Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990. J Magn Reson 213(2):423-441.
    43. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, & Kay LE (1994) A Suite of Triple-Resonance Nmr Experiments for the Backbone Assignment of N-15, C-13, H-2 Labeled Proteins with High-Sensitivity. Journal of the American Chemical Society 116(26):11655-11666.
    44. Wittekind M & Mueller L (1993) Hncacb, a High-Sensitivity 3d Nmr Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha-Carbon and Beta-Carbon Resonances in Proteins. J Magn Reson Ser B 101(2):201-205.
    45. Heinamaki K, Oeemig JS, Djupsjobacka J, & Iwai H (2009) NMR resonance assignment of DnaE intein from Nostoc punctiforme. Biomol Nmr Assigm 3(1):41-43.
    46. Shen Y, Delaglio F, Cornilescu G, & Bax A (2009) TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of biomolecular NMR 44(4):213-223.
    47. Clore GM & Gronenborn AM (1994) Multidimensional Heteronuclear Nuclear-Magnetic-Resonance of Proteins. Methods Enzymol 239:349-363.
    48. Kay LE, Wittekind M, Mccoy MA, Friedrichs MS, & Mueller L (1992) 4d Nmr Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods. J Magn Reson 98(2):443-450.
    49. Lopez-Mendez B & Guntert P (2006) Automated protein structure determination from NMR spectra. Journal of the American Chemical Society 128(40):13112-13122.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE