研究生: |
索納 Somnath Narayan Karad |
---|---|
論文名稱: |
新穎金金屬催化反應運用在高度官能基化有機分子之合成 New Gold-Catalyzed Transformations for Synthesis of Highly Functionalized Organic Molecules |
指導教授: | 劉瑞雄 |
口試委員: |
吳明忠
陳銘洲 黃國柱 蔡易州 劉瑞雄 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 636 |
中文關鍵詞: | 金金屬催化反應 、腈 、環氧化合物 、胺炔類化合物 |
外文關鍵詞: | Gold-catalysis, Nitriles, Epoxides, Aminoalkynes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
簡介
本論文介紹使用金鹽類進行有機轉化合成反應的新發展。我們使用這種軟性的alkynophilic金屬進行各種溫和條件反應和具有立體選擇性以及高效率的分子轉化反應而成功合成出高度官能基化的有機分子。為了更好地理解本論文,共分為四個章節加以討論。
第一章論述了1,2-氧芳基化反應,使用金催化腈與吡啶衍生氧化物。這是文獻上首次成功進行金催化氧芳基化反應,使用金的亞甲基作為反應啟動關鍵而產生benzo[d]azepine架構。例如氮雜環核心是自然界中最常見的架構以及廣泛普應用中的結構。這些反應也可合適地用於在分子間的三部分氧化劑,包括多樣alkenyldiazo酯類,腈,吡啶基氧化物來進行反應。
第二章討論金催化立體位向選擇可控制的[2+2+2]環加成ynamides分子的構築,其為藥學上重要的基本結構。這個新的環加成反應,具有的有優秀的位向選擇性並應用於廣泛的ynamides和腈分子。
第三章介紹了立體化學位向保留中效果優良的金催化[4+3]環加成環氧化物與 arenyanamides的反應。這種新的[4+3]環加成反應數據由大量的arenynamides分子和環氧化物產生。我們預測SN2型前側攻擊在環氧乙烷環的苯基上是導致立體化學保留的原因。
第四章介紹了金催化的1,2–difunctionalizations反應,aminoalkynes分子與包含氮和氧的氧化劑反應。在與IPrAuNTf2反應的條件下,nitrosobenzenes實現了一種新穎的反應,產生2 - oxoiminylamides然後進行硼氫化鈉還原得到2-氨基醇。
Abstract
This dissertation describes development of new synthetic organic transformations by using gold salts. The use of this soft alkynophilic metal enables mild, diastereoselective and efficient transformations of a variety of readily available substrates to wide range of synthetically useful highly functionalized products. For better understanding the thesis is divided into four chapters.
The first chapter deals with the gold-catalyzed 1,2-oxoarylations of nitriles with pyridine-derived oxides. This is the first success in the gold-catalyzed oxoarylations of nitriles using gold carbenes as initiators leading to benzo[d]azepine frameworks. Such azacyclic core is one of the most commonly encountering skeletons in nature and the core scaffold has a wide spread application in structural, biological importance. These oxoarylations were also achieved satisfactorily in intermolecular three-component oxidations, including diverse alkenyldiazo esters, nitriles, and pyridine-based oxides.
The second chapter deals with the gold-catalyzed regiocontrolled [2+2+2]-cycloadditions of ynamides with two discrete nitriles to construct 4-aminopyrimidine cores pharmaceutically important structural motifs. The utility of this new cycloaddition is manifested by the excellent regioselectivity with applicable ynamides and nitriles over a wide scope.
The third chapter describes the retention of stereochemistry in gold-catalyzed formal [4+3]-cycloaddition of epoxides with arenyanamides. The utility of this new [4+3]-Cycloaddition reaction is manifested by a wide scope of arenynamides and epoxides. An SN2-type front-side attack of phenyl at the oxiranyl ring is expected to cause the retention of stereochemistry.
The fourth chapter presents gold-catalyzed 1,2-difunctionalizations of aminoalkynes using Only N- and O-containing oxidants. In the presence of IPrAuNTf2, nitrosobenzenes implements a novel oxoimination of aminoalkynes to form 2-oxoiminylamides that are then subjected to NaBH4 reduction in situ to deliver 2-aminoalcohols.
Chapter1
[1] a) Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W.; Eds., Pergamon Press: Oxford, 1982. b) Green, M. L. H.; Davies, S.G. Philos. Trans. R. Soc. London A 1988, 326, 501. c) Collman, J.P.; Hegedus, L.S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987. d) Seebach, D. Angew. Chem. 1990, 102, 1363; Angew. Chem. Int. Ed. Engl. 1990, 29, 1320.
[2] a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. b) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew. Chem. Int. Ed. Engl. 1995, 34, 259. c) Trost, B. M. Science 1991, 254, 1471.
[3] a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94. d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
[4] a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010 110, 704. b) Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219. c) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53. d) Fedoryński, M. Chem. Rev. 2003 103, 1099. d) Doering, W. E.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162. e) Doering, W. von E.; Buttery, R. G.; Laughlin, R. G.; Chaudhure, N. J. Am. Chem. Soc. 1956, 78, 3224. f) Friedman, L.; Shechter, H. J. Am. Chem. Soc., 1960, 82, 1002.
[5] a) Organic Chemistry Morrison, R.T.; Boyd, R.N. pp. 473-478. b) Fischer, E. O.; Maasböl, A. Angew. Chem. 1964, 76, 645; Angew. Chem. Int. Ed. 1964, 3, 580. c) Hashmi, A. S. K. Angew. Chem. 2008, 120, 6856; Angew. Chem. Int. Ed. 2008, 47, 6754. d) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. e) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[6] For a Review on gold N-heterocyclic carbenes, see: a) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: b) Raubenheimer, H. G.; Esterhuysen, M.W.; Timoshkin, A.; Chen, Y.; Frenking, G. Organometallics 2002, 21, 3173. c) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. d) Faῆanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666.
[7] For recent examples: see: a) Ando, K. J. Org. Chem. 2010, 75, 8516. b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A 2010, 114, 12893. d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
[8] Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226–7236.
[9] Zhang, L. Acc. Chem. Res. 2014, 47, 877.
[10] Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
[11] Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
[12] Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
[13] Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
[14] Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem. 2012, 124, 1951; Angew. Chem., Int. Ed. 2012, 51, 1915.
[15] Cuenca, A. B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledós, A.; Medio-Simón, M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11, 4906.
[16] Li, C.-W.; Pati, K.; Lin, G.-Y.; Hung, H.-H.; Liu, R.-S. Angew. Chem. 2010, 122, 10087; Angew. Chem. Int. Ed. 2010, 49, 9891.
[17] a) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372. b) Bhunia, S.; Chang, C.-J.; Liu, R.-S. Org. Lett. 2012, 14, 5522.
[18] He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
[19] Ibrahim, N.; Hashmi, A. S. K.; Rominger, F. Adv. Synth. Catal. 2011, 353, 461.
[20] Lonzi, G.; López, L. A. Adv. Synth. Catal. 2013, 355, 1948.
[21] a) Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 1, 189. b) McMaster, L.; Langreck, F. B. J. Am. Chem. Soc. 1917, 39, 103.
[22] a) Aurich, H. G. Tetrahedron Lett. 1964, 5, 657. b) Kharasch, M. S.; Sosnovsky, G. Tetrahedron 1958, 3, 97. c) Kulp, S. S.; McGee, M. J. J. Org. Chem. 1983, 48, 4097. d) Watt, D. S. J. Org. Chem. 1974, 39, 2799. e) Selikson, S. J.; Watt, D. S. J. Org. Chem. 1975, 40, 267.
[23] See selected examples: a) Liu, K.-C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45, 3916. b) Gnichtel, H.; Autenrieth, L.; Luger, P.; Vangehr, K. Liebigs Ann. Chem. 1982. c) Boyer, J. H.; Manimaran, T.; Ramakrishanan, V. T. J. Chem. Soc. Perkin Trans. 1 1987, 2163. d) Hansen, T. V.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761. e) Kanemasa, S.; Nishiuchi, M. Tetrahedron Lett. 1993, 34, 4011.
[24] Although some 1,2-oxoarylations of nitriles were named in the literature, such reactions actually proceeded by initial hydration of the nitrile. See: Xiang, S.-K.; Zhang, D.-X.; Hu, H.; Shi, J.-L.; Liao, L.-G.; Feng, C.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Yang, H.; Yu, W.-H. Adv. Synth. Catal. 2013, 355, 1495.
[25] For a 1,5-shift occurring with quinoline N-oxide and imidoyl chlorides or nitriliums, see: Abramovitch, R. A.; Rogers, R. B.; Singer, G. M. J. Org. Chem. 1975, 40, 41.
[26] a) Abramovitch, R. A.; Singer, G. M. J. Am. Chem. Soc. 1969, 91, 5672. b) Abramovitch, R. A.; Singer, G. M. J. Org. Chem. 1974, 39, 1795. c) Abramovitch, R. A.; Tomasik, P. J. Heterocycl. Chem. 1975, 12, 501.
[27] a) Lombardino, J. G. J. Med. Chem. 1981, 24, 39. b) Lombardino, J. G.; Wiseman, E. H.; Chiani, J. J. Med. Chem. 1973, 16, 493. c) Caron, G.; Ermondi, G. J. Med. Chem. 2005, 48,
3269.
[28] a) Walker, S. R.; Carter, E. J.; Huff, B. C.; Morris, J. C. Chem. Rev. 2009, 109, 3080, and references therein; b) Leboho, T. C.; Van Vuuren, S. F.; Michael, J. P.; de Koning, C. B. Org. Biomol. Chem. 2014, 12, 307.
[29] a) Bechtel, W. D.; Mierau, J.; Palzer, H. Arzneim.-Forsch. 1986, 36, 793. b) Eberlein, W. G.; Engel, W. W.; Trummlitz, G.; Schmidt, G.; Hammer, R. J. Med. Chem. 1988, 31, 1169. c) Hammer, R.; Giachetti, A. Trends Pharmacol. Sci. 1984, 5, 18. d) Jaub, B. H. Scand. J. Gastroenterol. Suppl. 1981, 6, 68.
[30] a) Miralles, J. C.; Negro, J. M.; Sánchez-Gascán, F.; García, M. G. Alergol Inmunol. Clin. 2001, 16, 105. b) Rodríguez-Lozano, J.; Goday Buján, J. J.; Del Pozo, J.; Fonseca, E. Contact
Dermatitis 2005, 52, 110.
[31] For catalytic [3+2]-cycloadditions between nitriles and α-oxo or α -imino carbene species, a) Xiao, Y.; Zhang, L. Org. Lett. 2012, 14, 4662. b) Doyle, K. J.; Moody, C. J. Tetrahedron 1994, 50, 3761. c) Ibata, T.; Fukushima, K. Chem. Lett. 1992, 2197.
[32] For synthesis of pyrrole compounds from the [3+2] cycloadditions of nitriles and alkenylmetal carbenes, see ref. [20] and Billedeau, R. J.; Klein, K. R.; Kaplan, D.; Lou, Y. Org. Lett. 2013, 15, 1421.
[33] For a nucleophilic addition at C3 of alkenylgold carbenes, see: a) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728. b) Barluenga, J.; Lonzi, G.; Tomás, M.; López, L. A. Chem. Eur. J. 2013, 19, 1573.
[34] Unsubstituted pyridine and quinoline N-oxides were inapplicable substrates for the reaction is Tables 2–3 because the released pyridine and quinoline were expected to poison gold catalyst.
[35] Adamczyk, M.; Watt, D. S. J. Org. Chem. 1984, 49, 4226.
[36] Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728.
[37] Yamaguchi, Y.; Ochi, T.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. Org. Lett. 2006, 8, 717.
[38] a) Lin, M.-Y.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9340. b) Datta, S.; Odedra, A.; Liu, R. S. J. Am. Chem. Soc. 2005, 127, 11606.
Chapter2
[1] Selected reviews: (a) Casiraghi, G.; Zanardi, F. Chem. Rev. 2000, 100, 1929. (b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry, 2nd ed.; Bird, C. W., Ed.; Pergamon: Oxford, U.K., 1995; Vol. 2, p 121. (c) Sundberg, R. J. Indoles; Academic Press: London, U.K., 1996. (d) Lounasmaa, M.; Tamminen, T. In The Tropane Alkaloids in Alkaloids; Academic Press: New York, 1993; Vol. 44, p 1. (e) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (f) Bodnar, B. S.; Miller, M. J. Angew. Chem., Int. Ed. 2011, 50, 5630. (g) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447. (h) Michael, J. P. Nat. Prod. Rep. 2004, 21, 650.
[2] Reviews for the synthetic methods, biological functions and applications of pyrimidines, see: a) Hill, M. D.; Movassaghi, M. Chem. Eur. J. 2008, 14, 6836. b) Lagoja, I. M. Chem. Biodiversity 2005, 2, 1. c) Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.; Bendre, V. S.; Veer, V. S.; Shahane, S. R.; Shishoo, C. J. Current Science 2006, 90, 793. d) Sharma, V.; Chitranshi, N.; Agarwal, A. K. Int. J. Med. Chem. 2014, doi:10.1155/2014/202784. e) Walker, S. R.; Carter, E. J.; Huff, B. C.; Morris, J. C. Chem. Rev. 2009, 109, 3080. f) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084. g) Hanan, G. S.; Volkmer, D.; Schubert, U. S.; Lehn, J.-M.; Baum, G.; Genske, D. Angew. Chem. Int. Ed. Engl. 1997, 36, 1842.
[3] (a) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. (b) Martin, J. N.; Jones, R. C. F. Padwa, A., Pearson, W. H., John Wiley & Sons: Hoboken, NJ, 2003; Chapter 1. (c) Gothelf, K. V. Kobayashi, S., Jørgensen, K. A., Wiley-VCH: Weinheim, Germany, 2002; Chapter 6. (d) Kanemasa, S. Kobayashi, S., Jørgensen, K. A., Wiley-VCH: Weinheim, Germany, 2002; Chapter 7.
[4] a) K. Undheim, T. Benneche, in Comprehensive Heterocyclic Chemistry II, Vol. 6 (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven, A. McKillop), Pergamon, Oxford, 1996, p. 93 –231; b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. c) Joule, J. A.; Mills, K. in Heterocyclic Chemistry, 4th ed.. Blackwell, Cambridge, 2000, p. 194 –232; d) Erian, A.W. Chem. Rev. 1993, 93, 1991.
[5] a) [2 + 2 + 2] Cycloaddition reactions are also domino reactions. For applications and examples, see: L. F. Tietze, G. Brasche and K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-
VCH, Weinheim, 2006 and cited references. b) Reppe, W.; Schichting, O.; Klager, K.; Toepel, T. Justus Liebigs Ann. Chem. 1948, 560, 1–92.
[6] For selected reviews, see: a) J. A. Varela, C. Saá, Chem. Rev. 2003, 103, 3787. b) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. c) Heller, B.; Hapke, M.; Chem. Soc. Rev. 2007, 36, 1085. d) Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095. e) Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430. f) Tanaka, K. Hetereocycles 2012, 85, 1017.
[7] Co- a) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Chem. Eur. J. 2012, 18, 4337. b) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Org. Lett. 2011, 13, 2030. c) Heller, B.; Sundermann; B.; Fischer, C.; You, J.; Chen, W.; Drexler, H.-J.; Knochel, P.; Bonrath, W.; Gutnov, A. J. Org. Chem. 2003, 68, 9221. d) Kase, K.; Goswami, A.; Ohtaki, K.; Tanabe, E.; Saino, N.; Okamoto, S. Org. Lett. 2007, 9, 931. e) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew. Chem. 2004, 116, 3883; Angew. Chem. Int. Ed. 2004, 43, 3795. f) Hapke, M.; Kral, K.; Fischer, C.; Spannenberg, A.; Gutnov, A.; Redkin, D.; Heller, B. J. Org. Chem. 2010, 75, 3993. g) Varela, J. A.; Castedo, L.; Saá, C. Org. Lett. 1999, 1, 2141. h) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2007, 9, 505. i) Gray, B. L.; Wang, X.; Brown, W. C.; Kuai, L.; Schreiber, S. L. Org. Lett. 2008, 10, 2621. j) Yuan, C.; Chang, C.-T.; Siegel, D. J. Org. Chem. 2013, 78, 5647. k) Heller, B.; Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrabe, U.; Heller, E.; Oehme, G. J. Org. Chem. 2002, 67, 4414. l) Boñaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E.; J. Am. Chem. Soc. 2005, 127, 3473. m) Yuan, C.; Chang, C.-T.; Axelrod, A.; Siegel, D. J. Am. Chem. Soc. 2010, 132, 5924.
[8] Ru- a) Yamamoto, Y.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6189. b) Yamamoto, Y.; Okuda, S.; Itoh, K. Chem. Commun. 2001, 1102. c) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605. d) Varela, J. A.; Castedo, L.; Saá, C. J. Org. Chem. 2003, 68, 8595. e) Yamamoto, Y.; Kinpara, K.; Ogawa, R.; Nishiyama, H.; Itoh, K. Chem. Eur. J. 2006, 12, 5618.
[9] Rh- a) Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917. b) Tanaka, K.; Hara, H.; Nishda, G.; Hirano, M. Org. Lett. 2007, 9, 1907. c) Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2007, 9, 1295. d) Komine, Y.; Tanaka, K. Org. Lett. 2010, 12, 1312. e) Shibata, T.; Uchiyama, T.; Endo, K. Org. Lett. 2009, 11, 3906.
[10] Fe- a) Wang, C.; Li, X.; Wu, F.; Wan, B. Angew. Chem. 2011, 123, 7300; Angew. Chem. Int. Ed. 2011, 50, 7162. b) Wang, C.; Wang, D.; Xu, F.; Pan, B.; Wan, B. J. Org. Chem. 2013, 78, 3065.
c) Lane, T. K.; D’Souza, B. R.; Louie, J. J. Org. Chem. 2012, 77, 7555. d) D’Souza, B. R.; Lane, T. K.; Louie, J. Org. Lett. 2011, 13, 2936.
[11] Ni- a) Takahashi, T.; Tsai, F.-Y.; Li, Y.; Wang, H.; Kondo, Y.; Yamanaka, M.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 5059. b) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030. c) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem. 2011, 123, 10882; Angew. Chem. Int. Ed. 2011, 50, 10694. d) Stolley, R. M.; Duong, H. A.; Thomas, D. R.; Louie, J. J. Am. Chem. Soc. 2012, 134, 15154. e) Stolley, R. M.; Maczka, M. T.; Louie, J. Eur. J. Org. Chem. 2011, 3815. f) Dallinger, D.; Irfan, M.; Suljanovic, A.; Kappe, C. O. J. Org. Chem. 2010, 75, 5278.
[12] Ir- Onodera, G.; Shimizu, Y.; Kimura, J.-N.; Kobayashi, J.; Ebihara, Y.; Kondo, K.; Sakata, K.; Takeuchi, R. J. Am. Chem. Soc. 2012, 134, 10515.
[13] Ti- a) Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7474. b) Suzuki, D.; Tanaka, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 3518. c) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki, D.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7774.
[14] a) Liu, Y.; Yan, X.; Yang, N.; Xi, C. Catal. Commun. 2011, 12, 489. b) Pillai, S. M., Ohnishi, R.; Ichikawa, M. J. Chem. Soc., Chem. Commun. 1990, 246. c) Costa, M.; Dias, F. S.; Chiusoli, G. P.; Gazzola, G. L. J. Organomet. Chem. 1995, 47. d) Knoch, F.; Kremer, F.; Schmidt, U.; Zenneck, U. Organometallics 1996, 15, 2713. e) Wang, C.; Li, X.; Wu, F.; Wan, B. Angew. Chem. Int. Ed. 2011, 50, 7162. f) Hilt, G.; Vogler, T.; Hess, W.; Galbiati, F. Chem. Commun. 2005, 1417. g) Hilt, G.; Hess, W.; Vogler, T.; Hengst, C. J. Organomet. Chem. 2005, 5170. h) Hsieh, J.-C.; Cheng, C.-H. Chem. Commun. 2008, 2992. i) Hoberg, H.; Oster, B. W. J. Organomet. Chem., 1983, 359.
[15] Varela, J. A.; Castedo, L.; Saá, C. J. Org. Chem. 2003, 68, 8595.
[16] Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7474.
[17] Satoh, Y.; Yasuda, K.; Obora, Y. Organometallics 2012, 31, 5235.
[18] You, X.; Yu, S.; Liu, Y. Organometallics 2013, 32, 5273.
[19] Lane, T. K.; Nguyen, M. H.; D’Souza, B. R.; Spahn, N. A.; Louie, J. Chem. Commun. 2013, 49, 7735.
[20] Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840.
[21] Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
[22] Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852; Angew. Chem. Int. Ed. 2012, 51, 8722.
[23] Reviews for ynamides, see ref. 13 and a) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560. b) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[24] For Au-catalyzed reactions on ynamides, see ref. 14, 15 and selected examples: a) Vasu, D.; Hung, H. H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911. d) Rettenmeier, E.; Schuster, A. M.; Rudolph, M.; Rominger, F.; Gade, C. A.; Hashmi, A. S. K. Angew. Chem. 2013, 125, 5993; Angew. Chem. Int. Ed. 2013, 52, 5880. e) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottländer, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem. 2011, 123, 5196; Angew. Chem. Int. Ed. 2011, 50, 5090. f) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem. 2011, 123, 9093; Angew. Chem. Int. Ed. 2011, 50, 8931.
[25] a) Balakrishnan, P.; Shanmugam, S.; Lee, W. S.; Lee, W. M.; Kim, J. O.; Oh, D. H.; Kim, D.-D.; Kim, J. S.; Yoo, B. K.; Choi, H.-G.; Woo, J. S.; Yong, C. S. Int. J. Pharm. 2009, 377, 1. b) Webb, M. E.; Marquet, A.; Mendel, R. R.; Rébeillé, F.; Smith, A. G. Nat. Prod. Rep. 2007, 24, 988. c) Limpert, A. S.; Mattmann, M. E.; Cosford, N. D. P. Beilstein J. Org. Chem. 2013, 9, 717. d) Gangjee, A.; Vasudevan, A.; Queener, S. F.; Kisliuk, R. L. J. Med.Chem. 1996, 39, 1438. e) Zilles, J. L.; Croal, L. R.; Downs, D. M. J. Bacteriol. 2000, 182, 5606. f) Huges, J.; Roberts, L. C.; Coppridge A. J. J. Urol. 1975, 114, 912.
[26] Crystallographic data of compounds 2-1a (CCDC 1001397) and 2-2i (CCDC 1001398) were deposited at Cambridge Crystallographic Data Center.
[27] Coeffard, V.; Thobie-Gautier, C.; Beaudet, I.; Grognec, E. L.; Quintard, J. P. Eur. J. Org. Chem. 2008, 383.
[28] We have examined the 13C NMR study for an equimolar mixture of benzonitrile and PPh3AuCl/AgSbF6 in CD2Cl2; the 13C signal of the nitrile appeared at 119.2 ppm, very close of that of free nitrile (118.8 ppm). This observation revealed that this gold catalyst had certain affinity toward nitrile.
[29] a) Ogonor, J. I. Tetrahedron 1981, 37, 2909. b) Anker, R. N.; Cook, A. H. J. Chem. Soc. 1941, 323. c) Aharonovich, S.; Botoshansky, M.; Waymouth, R. M.; Eisen, M. S. Inorg. Chem. 2010, 49, 9217. d) Armstrong, D. R.; Henderson, K. W.; MacGregor, M.; Mulvey, R. E.; Ross, M. J.; Clegg, W.; O’Neil, P. A. J. Organomet. Chem. 1995, 486, 79. e) Armstrong, D. R.; Clegg, W.; MacGregor, M.; Mulvey, R. E.; O’Neil, P. A. J. Chem. Soc. Chem. Commun. 1993, 608. f) Langer, P.; Döring, M.; Seyferth, D. Chem. Commun. 1998, 1927. g) Burns, T. P.; Rieke, R. D. J. Org. Chem. 1987, 52, 3674. h) Eisch, J. J.; Ma, X.; Han, K. I.; Gitua, J. N.; Krüger, C. Eur. J. Inorg. Chem. 2001, 77.
[30] For reviews of gold-catalyzed cycloaddition reactions, see a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. b) López, F.; Mascareñas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954. d) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462.
[31] Selected examples: a) Barluenga, J.; Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764. b) Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633. c) Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem. 2013, 125, 6654; Angew. Chem. Int. Ed. 2013, 52, 6526.
[32] For synthesis of ynamides: see the published procedures: a) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R. S. J. Am. Chem. Soc. 2011, 133, 15372. b) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117 – 121; Angew. Chem. Int. Ed. 2012, 51, 113. c) Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852; Angew. Chem. Int. Ed. 2012, 51, 8722. d) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151. e) Gawade, S. A.; Huple, D. B.; Liu, R.-S. J. Am. Chem. Soc. 2014, 136, 2978. f) J. Lee, Y.-L. Zhong, R. A. Reamer, D. Askin, Org. Lett., 2003, 5, 4175. g) D. Vasu, H.-H. Hung, S. Bhunia, S. A. Gawade, A. Das, R.-S. Liu, Angew. Chem. 2011, 123, 7043–7046; Angew. Chem. Int. Ed. 2011, 50, 6911 – 6914.
[33] For transformation of a sulfonamide (3-4s) into an amine (3-4s’), see the published procedure: V. Coeffard, C. Thobie-Gautier, I. Beaudet, E. L. Grognec, J. P. Quintard, Eur. J. Org. Chem. 2008, 383 – 391.
Chapter3
[1] Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1–23.
[2] Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
[3] Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
[4] (a) Bertz, S. H. J. Am. Chem. Soc. 1981, 103, 3599. (b) Curran, D. P., Ed. Advances in Cycloaddition; JAI Press: Greenwich, 1994; Vol. 1-3. (c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (e) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (f) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 6, 1317. (g) K. Tanaka, Chem. Asian J., 2009, 4, 508.
[5] a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. e) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. f) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. g) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. h) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. i) Shen, H. C. Tetrahedron 2008, 64, 7847.
[6] a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. b) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
[7] a) Hodgson, D. M.; Bray, C. D. In Aziridines and Epoxides in Organic Synthesis, A. K. Yudin (Ed.), pp. 145–184, Wiley-VCH, Weinheim (2006). b) Ramón, D. J.; Yus, M. Curr. Org. Chem. 2004, 8, 149. c) Hu, X. E. Tetrahedron 2004, 60, 2701.
[8] (a) Padwa, A. In Comprhensive Heterocyclic Chemistry III; Katrizky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: New York, 2008; Vol. 1, pp 1−104. (b) Sweeney, J. B. In Science of Synthesis; Schaumann, E., Enders, D., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2008; Vol. 40a, p 643. (c) Padwa, A.; Murphee, S. S. Prog. Heterocycl. Chem. 2003, 15, 75. (d) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. (e) Zwanenburg, B.; ten Holte, P. Top. Curr. Chem. 2001, 216, 93. (f) Lindstrom, U. M.; Somfai, P. Synthesis 1998, 109. (g) Somfai, P.; Ahman, J. Targets Heterocycl. Syst. 1999, 3, 341.
[9] Madhushaw, R. J.; Hu, C.-C.; Liu, R.-S. Organic Letters 2002 4, 4151.
[10] a) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528–7529. b) Fan, J.; Gao, L.; Wang, Z. Chem. Commun., 2009, 45, 5021. c) Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem. 2000, 112, 4790; Angew. Chem. Int. Ed. 2000, 39, 4615. d) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1991, 56, 3210. e) Bergmeier, S. C.; Fundy, S. L.; Seth, P. P. Tetrahedron 1999, 55, 8025. f) Sugita, Y.; Kimura, Y.; Yokoe, I. Tetrahedron Lett. 1999, 40, 5877. g) Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2, 953. h) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K.; Srihari, P. P.; Prathap, I. Tetrahedron Lett. 2001, 42, 9089.
[11] Shim, J.-G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067.
[12] Zhou, Y.-Q.; Wang, N.-X.; Zhou, S.-B.; Huang, Z.; Cao, L. J. Org. Chem. 2011, 76, 669.
[13] a) Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós A.; Mascareñas, J. L. Chem. Eur. J., 2009, 15, 3336. b) Mauleón, P.; Zeldin, R.M.; González, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348.
[14] Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem., Int. Ed. 2010, 49, 2840.
[15] Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
[16] a) S. Winstein in R. C. Elderfield, “Heterocyclic Compounds,” Vol. I, John Wiley and Sons, Inc., New York, N. Y., 1950 pp. 29-39. b) C. K. Ingold, “Structure and Mechanism in Organic Chemistry,” Cornell University Press, Ithaca, N. Y.;
[17] a) Kornblum, N.; Smiley, R. A.; Blackwood, R. K.; Iffland, D. C. J. Am. Chem. Soc. 1955 77, 6269. b) Brewster J. H. J. Am. Chem. Soc., 1956, 78, 4061. c) Lee, J. T.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001 66, 5424.
[18] For metal-catalyzed cycloaddition reactions, see selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. c) Sohel, S. M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
[19] For selected reviews for epoxides and aziridines, see: a) A. K. Yudin in Aziridines and Epoxides in Organic Synthesis, Wiley- VCH, Weinheim, 2006; b) Gothelf, K. V.; Jørgensen, K. A.
Chem. Rev. 1998, 98, 863.
[20] see ref. 9 and a) Madhushaw, R. J.; Li, C.-L.; Hu, J.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427. b) Shen, K.-H.; Lush, S.-F.; Chen, T.-L.; Liu, R.-S. J. Org. Chem. 2001, 66, 8106. [21] For gold-catalyzed [4+3] cycloadditions, reported examples were performed exclusively in an intramolecular fashions. See a) López, F.; Mascareñas, J. L. Beilstein, Beilstein J. Org. Chem. 2011, 7, 1075. b) Gulías, M.; López, F.; Mascareñas, J. L. Pure Appl. Chem. 2011, 83, 495. c) Mauleón, P.; Zeldin, R. M.; A. Z. González, Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348. d) Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. Chem. Eur. J. 2009, 15, 3336. e) Alonso, I.; Faustino, H.; López, F.; Mascareñas, J. L. Angew. Chem. 2011, 123, 11698. Angew. Chem. Int. Ed. 2011, 50, 11496. f) Alonso, I.; Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. J. Am. Chem. Soc. 2009, 131, 13020.
[22] see ref. 9, 10 and a) Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem. 2000, 112, 4790; Angew. Chem. Int. Ed. 2000, 39, 4615. b) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1991, 56, 3210 c) Bergmeier, S. C.; Fundy, S. L.; Seth, P. P. Tetrahedron 1999, 55, 8025. d) Sugita, Y.; Kimura, Y.; Yokoe, I.; Tetrahedron Lett. 1999, 40, 5877. e) Nakagawa, M.; Kawahara, M., Org. Lett. 2000, 2, 953. f) J.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067. g) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K.; Srihari, P. P.; Prathap, I. Tetrahedron Lett. 2001, 42, 9089. h) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021.
[23] See ref. 17b and a) Inoue, M.; Sugita, T.; Kiso, Y.; Ichikawa, K. Bull. Chem. Soc. Jpn. 1976, 49, 1063. b) Nakajima, T.; Suga, S.; Sugita, T.; Ichikawa, K. Tetrahedron 1969, 25, 1807.
[24] For chemistry of ynamides, see: a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064. b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840. c) Hashmi, A. S. K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J. W.; Hamzić, M. Angew. Chem. 2009, 121, 5962; Angew. Chem. Int. Ed. 2009, 48, 5848.
[25] For gold-catalyzed electrophilic activation of ynamides, see reference [24] and selected examples: a) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem. 2010, 122, 10087; Angew. Chem. Int. Ed. 2010, 49, 9891. b) Davies, P.W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379. c) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738. d) Vasu, D.; Hung, H. H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911. e) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottländer, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem. 2011, 123, 5196; Angew. Chem. Int. Ed. 2011, 50, 5090; f) Hashmi, A. S. K.; Bührle, M.; Wőlfle, M.; Rudolph, M.; Wieteck, M.; Rominger, F.; Frey, W. Chem. Eur. J. 2010, 16, 9846. g) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem. 2011, 123, 9093; Angew. Chem. Int. Ed. 2011, 50, 8931. h) Garcia, P.; Harrak, Y.; Diab, L.; Cordier, P.; Ollivier, C.; Gandon, V.; Malacria, M.; Fensterbank, L.; Aubert, C. Org. Lett. 2011, 13, 2952.
[26] Complete retention of stereochemistry has been reported for the reactions of epoxides or aziridines with CO and CO2 using low-valent metals; their mechanisms are distinct from those reactions that use Lewis acid to implement nucleophilic attack at epoxides.
[27] S. Calet, F. Urso, H. Alper, J. Am. Chem. Soc. 1989, 111, 931 – 934. b) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526.
[28] a) Liu, J.-H.; Steigel, A.; Reininger, E.; Bauer, R. J. Nat. Prod. 2000, 63, 403. b) Meriçli, F.; Mericli, A. H.; Becker, H.; Ulubelen, A. Phytochemistry 1996, 42, 1257. c) Ulubelen, A.; Tuzlaci, E.; Atilan, N. Phytochemistry 1989, 28, 649.
[29] a) For synthesis of ynamides see a) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. Int. Ed., 2012, 51, 113. b) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R. S. J. Am. Chem. Soc., 2011, 133, 15372. c) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630. d) Schotes, C.; Mezzetti A. Angew Chem. Int. Ed. 2011, 50, 3072.
[30] a) Racemic compound 3-2’e: a) Lemini, C.; Ordonez, M.; Pérez-Flores, J.; Cruz-Almanza, R. syn. Comm., 1995, 25, 2695. b) Compound 3g: Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. Tetrahedron Lett., 1989, 30, 1427. c) Compound racemic 3i: i) Stradi, R.; Pocar, D.; Cassio, C. J. Chem. Soc., Perkin Trans. 1, 1974, 2671. ii) Singaram, B.; Goralski, C.; Rangaishenvi, M.; Brown, H. J. Am. Chem. Soc., 1989, 111, 384. iii) Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. Tetrahedron: asymmetry, 2006, 17, 372. d) Compound 3j was prepared form commercially available trans-beta-methylstyrene (available from Aldrich) by using the procedure by Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. Tetrahedron: asymmetry, 2006, 17, 372.
[31] a) Collman, J. P.; Lee, V. J.; Kellen-Yuen, C. J.; Zhang, X.; Ibers, J. A.; Brauman, J. I. J. Am. Chem. Soc., 1995, 117, 6923. b) Cordes, D. B.; Kwong, T. J.; Morgan, K. A.; Singaram, B. Tetrahedron Lett., 2006, 47, 3493. c) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L.; J. Org. Chem., 1992, 57, 2768 d) Imanishi M.; Nakajima Y.; Tomishima Y.; Hamashima H.; Washizuka K., Sakurai M.; Matsui S.; Imamura E.; Ueshima K.; Yamamoto T.; Yamamoto N.; Ishikawa H.; Nakano K.; Unami N.; Hamada K.; Matsumura Y.; Takamura F.; and Hattori K. J. Med. Chem., 2008, 51, 48043. e) Compound chiral 3-2i: Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc., 1991, 113, 7063.
Chapter4
[1] Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
[2] a) Ager, D. J.; Prakash, I; Schaad, D. R. Chem. Rev. 1996, 96, 835. b) Frump, J.A. Chem. Rev. 1971, 71, 483.
[3] a) Schreiber, S. L. Science 2000, 287, 1964. b) Nicolaou, K. C.; Boddy, C. N. J. Am. Chem. Soc. 2002, 124, 10451. c) Michael, J. P. Nat. Pro. Rep. 1999, 16, 675. d) Michael, J. P. Nat. Pro. Rep. 2001, 18, 520-542. e) Yendapally, R.; Lee, R. E. Bioorg. Med. Chem. Lett., 2008, 18, 1607. f) Venturoli, S.; Marescalchi, O.; Colombo, F. M.; Macrelli, S.; Ravaioli, B.; Bagnoli, A.; Paradisi, R.; Flamigni, C. J. Clin. Endo-crinol. Metab. 1999, 84, 1304.
[4] a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.
[5] a) Reetz, M. T. Angew. Chem. Int. Ed. 1991, 30, 1531. b) Cepanec, I.; Litvic, M.; Mikuldas, H.; Bartolincic, A.; Vinkovic, V. Tetrahedron, 2003, 59, 2435. c) Li, G.; Chang, H.-T.; Sharpless, B. K. Angew. Chem. Int. Ed. 1996, 35, 451. d) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431. e) Restorp, P.; Somfai, P. Org. Lett. 2005, 7, 893.
[6] For a general treatise, see: Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.
[7] Corti, C. W.; Holliday, R. C.; Thompson, D. T. Top. Catal. 2007, 44, 331.
[8] Hutchings, G. J. Catal. Today 2007, 122, 196.
[9] Cat Gold News, Gold Bull. 2007, 40/2, C1.
[10] (a) Das, A.; Abu, S. M. A.; Liu, R.-S. Org. Biomol. Chem., 2010, 8, 960. (b) Sohel, S.M.A.; Liu, R.-S. Chem. Soc. Rev., 2009, 38, 2269. (c) Arcadi, A. Chem. Rev. 2008, 108, 3266. (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (e) Jiménez- Núñez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (f) Gorin,D. J.; Toste, F. D. Nature 2007, 446, 395. (g) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (h) Krause, N.; Morita, N. In Comprehensive Organometellic Chemistry III; Crabtree, R. C., Mingos, M., Eds.; Elsevier B. V.: Amsterdam, 2007; Vol. 9, p 501.(i) Hashmi, A. S. K. Catal. Today 2007, 122, 211. (j) Hashmi, A. S. K.; Hutchings, G. Angew. Chem., Int. Ed. 2006, 45, 7896. (k) Widenhoefer, R.; Han, X. Eur. J. Org. Chem. 2006, 4555. (l) Zhang, L.; S. J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (m) Nieto-Oberhuber, C.; López, S.; Jiménez-Núñez, E.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 5916. (n) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (o) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. (p) Hoffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (q) Arcadi, A.; Di Giuseppe, S. Curr. Org. Chem. 2004, 8, 795. (s) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (t) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. (u) Dyker, G. In Organic Synthesis; Highlights, V., Schmalz, H.-G., Wirth, T., Eds.; Wiley-VCH: Weinheim, Germany, 2004; p 48. (v) Dyker, G. Angew Chem. Int. Ed. 2000, 39, 4237. (w) Sawamura, M.; Ito, Y. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000; p 493. (x) Sawamura, M.; Ito, Y. Chem. Rev. 1992, 92, 857.
[11] For monographs, see: (a) Dörwald, F. Z. Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999. (b) Barluenga, J.; Rodríguez, F.; Fañanás, F. J.; Flórez, J. In Metal Carbenes in Organic Synthesis; Dötz, K. H., Ed.; Topics in Organometallic Chemistry, Vol. 13; Springer: Berlin, 2004; pp 59-122. (c) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998.
[12] For selected reviews and monographs, see: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, 2002. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (c) Mehta, G.; Muthusamy, S. Tetrahedron 2002, 58, 9477. (d) Taber, D. F. In Comprehensive Organic Synthesis, Vol. 3; Trost, B. M., Fleming, I., Pattenden, G., Eds.; Pergamon Press: Oxford, U.K.; 1991; pp 1045-1062.
[13] For examples of gold carbenes generated from diazo compounds, see: (a) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, early view. (b) Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284. (c) Li, Z.; Ding, X.; He, C. J. Org. Chem. 2006, 71, 5876. (d) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704. (e) Flores, J. A.; Dias, H. V. R. Inorg. Chem. 2008, 47, 4448. (f) Fedorov, A.; Moret, M.-E.; Chen, P. J. Am. Chem. Soc. 2008, 130, 8880. (g) Prieto, A.; Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J.; Pérez-Galán, P.; Delpont, N.; Echavarren, A. M. Tetrahedron 2009, 65, 1790. For a carbene transfer from Cr(0), see: (h) Fañanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666. For the use of propargylic esters in gold catalysis, see: (i) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (j) José, M.-C.; Elena, S. Chem. Eur. J. 2007, 13, 1350.
[14] a) Q. Yao, M. Zabawa, J. Woo, C. Zheng, J. Am. Chem. Soc. 2007, 129, 3088; b) Y. Zhang, G. Song, G. Ma, J. Zhao, C. L. Pan, X. Li, Organometallics 2009, 28, 3233. c) Youssif, S. Arkivoc 2001, 242; d) Ryzhakov, A. V.; Rodina, L. L. Heterocycles 2008, 75, 2367; e) Ley, S.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639. f) Pool, J.; Scott, B.; Kiplinger, J. J. Am.Chem. Soc. 2005, 127, 1338.
[15] α-Carbonyl carbenoids are generated from nitrogen-based oxides. See reference. (a) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225. (b) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (c) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. d) Ye, L.; He W.; Zhang, L. J. Am. Chem. Soc., 2010, 132, 8550.
[16] (a) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem. Int. Ed. 2008, 47, 7040. b) Yeom, H. S.; Lee, Y.; Lee, J. E.; Shin, S. Org. Biomol. Chem. 2009, 7, 4744.
[17] Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
[18]a) L. C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020; b) L. C. Campeau, D. J. Schipper, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 3266; c) L. C. Campeau, D. R. Stuart, J.-P. Leclerc, M. Bertrand-Laperle, E. Villemure, H. Y. Sun, S. Lasserre, N. Guimond, M. Lecavallier, K. Fagnou, J. Am. Chem. Soc. 2009, 131, 3291; d) J. P. Leclerc, K. Fagnou, Angew. Chem. 2006, 118, 7945; Angew. Chem. Int. Ed. 2006, 45, 7781; e) M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357; f) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130, 9254; g) P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu, J. You, J. Am. Chem. Soc. 2010, 132, 1822.
[19] J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc. 2009, 131, 13888. b) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258.c) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
[20] Murru, S.; Gallo, A. A.; Srivastava, R. S. ACS Catal. 2011, 1, 29.
[21] In intermolecular processes, metal-catalyzed oxidative 1,2-difunctionalizations of alkynes were only reported for dicarbonyl compounds: Xu, C.-F.; Xu, M.; Jia, Y.-X.; Li, C.-Y. Org. Lett. 2011, 13, 1556 and references therein.
[22] a) Compound 4-1j: Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett., 2004, 6, 1151. b) Compound 4-1a: Schotes, C.; Mezzetti, A. Angew. Chem. Int. Ed. 2011, 50, 3072. c) Compound 4-1o: Dooleweerdt, K.;Birkedal, H.; Ruhland, T.; Skrydstrup, T. J. Org. Chem. 2008, 73, 9447.
[23] Zhao, D.; Johansson, M; Bäckvall, J.-E. Eur. J. Org. Chem., 2007, 4431.
[24] a) Pujala, S. B.; Chakraborti, A. K. J. Org. Chem., 2007, 72, 3713. b) Chimni, S. S.; Bala, N.; Dixit, V.A.; Bharatam, P.V. Tetrahedron, 2010, 66, 3042.
[25] a) Reddy, J. S.; Bharathi, E. V.; Dastagiri, D.; Kamal, A. Tetrahedron Lett., 2008,49, 348. b) Kamal, A.; Sandbhor, M.; Shaik, A. A. Bioorg. Med. Chem. Lett., 2004, 14, 4581.