研究生: |
黃思惟 Huang, Szu-Wei |
---|---|
論文名稱: |
A Study of Run-Length Limited Codes for Bandwidth-Efficient CPM 連續長度限制碼應用於高頻寬效能連續相位調變的研究 |
指導教授: |
呂忠津
Lu, Chung-Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 連續相位調變 、頻寬效益 、連續長度限制碼 |
外文關鍵詞: | Continuous Phase Modulation, Bandwidth Efficiency, Run Length-Limited Codes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
連續相位調變因為具有較低的頻譜旁瓣,又因為其固定封包大小的調變方式,使其能有效適應於無線通訊系統上的能量及頻寬限制,所以得以應用於行動及無線通訊系統上。然而,由於連續相位調變所佔據的主頻寬相對比較寬,導致其無法提供較好的頻寬效益。
近年來有許多討論關於輸入不同類型的序列到連續相位調變之後,會造成對頻寬效益有怎樣影響的研究。Barbieri等人曾討論在輸入馬可夫序列到連續相位調變比輸入獨立相同分佈的序列到連續相位調變擁有較好的頻寬效益。林昌弘碩士論文提出了一種資料擴增的裝置,我們稱之為資料擴增器,用此裝置來將獨立相同分佈的訊息序列轉換為馬可夫序列,再藉由將轉換出來的馬可夫序列輸入到連續相位調變之中的方式,來將頻寬效益最大化。在本篇論文中,我們使用了原本用於確保資聊儲存完整的連續長度限制碼,用此碼來將獨立相同分佈的序列轉換成適合連續相位調變的序列,藉由此種方式來改善頻寬效益。
在本論文中,由於我們使用的是修正型的調變參數,所以我們首先用模擬的方式來驗證此參數使用於卡森法則的可行性。接下來,我們利用修正後的卡森法則來評估出連續相位調變訊號的頻寬。經由數值分析的探討,我們比較了獨立相同分佈序列、理想馬可夫序列和藉由查表式編碼方式和連續長度限制碼設計出來的資料擴增器所產生的序列,比較了這三種序列輸入連續相位調變後對頻寬效益的影響。
綜合去找出最合適以及最便於應用的資料擴增架構。
In this thesis, we investigate the bandwidth efficiency of
continuous-phase modulated (CPM) signal with i.i.d. input source
and Markov source. With a device called data expander, an i.i.d.
information sequence can be transformed into a Markov-like
sequence before feeding to the CPM modulator. A new design by
using run-length limited codes is proposed in this thesis to relax
the high encoding/decoding complexity encountered by previously
developed table-look codes when the length of the Markov-like
sequence $n$ becomes large. Analysis also shows that this new
design not only makes the data expander easier to implement, but
also keeps the good performance on bandwidth efficiency.
Bibliography
[1] C.-H. Kuo and K. M. Chugg, \On the bandwidth e±ciency of CPM signals." Proc. IEEE
Military Communications Conference, vol. 1, pp. 218{224, 2004.
[2] ||, \Improving the bandwidth e±ciency and performance of CPM signals via shaping
and iterative detection." Proc. IEEE Military Communications Conference, vol. 1, pp.
596{602, 2005.
[3] A. Barbieri, A. Cero, A.Piemontese, and G. Colavolpes, \Markov capacity of continuous
phase modulations." Proc. IEEE International Symposium on Information Theory, vol.
24-29, pp. 161{165, 2007.
[4] B. E. Rimoldi, \A decomposition approach to CPM." IEEE Trans. Inform. Theory,
vol. 34, pp. 260{270, 1988.
[5] C.-H. Lin, \On the bandwidth e±ciency of convolutional coded CPM," Master Thesis of
National Tsing-Hua University, 2008.
[6] D. T. Tang and L. R. Bahl, \Block codes for a class of constrained noiseless channels."
Information and Control, vol. 17, pp. 436{461, 1970.
[7] K. A. S. Immink, \Runlength-limited sequences." Proceedings of the IEEE, vol. 78, pp.
1745{1759, 1990.
[8] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley, 2005.
[9] S. Haykin, Communication Systems, 4th ed. Wiley, 2001