研究生: |
陳鵬宇 Chen, Peng-Yu |
---|---|
論文名稱: |
環狀及鏈狀電解質薄膜內奈米尺度電滲透與輸送現象分子動力分析 Molecular Dynamics Analysis of Nano-scale Electro-osmotic and Transport Phenomena inside Ring- and Chain-type Electrolytic Membranes |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 分子動力模擬 、電滲透 、直接甲醇燃料電池 、甲醇穿透 、電場效應 、磺酸化聚醚醚酮酮膜 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究執行分子動力模擬藉以分析環狀鏈狀電解質薄膜內奈米尺度電滲透現象,目標是想要解決直接甲醇燃料電池內的甲醇穿透問題。論文中主要是利用分子動力學的手段分析奈米尺度的輸送現象以及研究相關的效應。
本論文首先研究電場效應對於Nafion膜內輸送動力學的影響,沿著質子傳遞的方向施加不同的電場,其強度由2.5×103 V m-1到7.5×103 V m-1。模擬結果發現,當考慮電場時,膜的形態會產生明顯的變化;隨著電場強度增加,質子以及水分子的移動性也會增加。而從分子的移動軌跡圖可以看出施加電場以及沒有施加電場兩者輸送現象的差異,此外我們可以利用這個分子分析技術研究在電場的影響下水分子簇的分佈及其大小。
由擴散及滲透機制造成的甲醇穿透會降低直接甲醇燃料電池的性能。本論文第二部份將由原子的觀點重現Nafion膜內甲醇穿透現象,在四種不同的甲醇濃度下,模擬由Nafion、水分子以及質子所構成的系統。模擬結果顯示甲醇分子會隨著水分子以及質子經由磺酸根在電解質內移動。不同甲醇濃度下甲醇的電滲透拖曳係數以及擴散係數皆已被求得並且與實驗值比較,而熱效應對於甲醇擴散的影響也經由此分子分析技術加以研究。
本論文的第三部份則是利用同樣的原子模擬技術研究分子構造效應對於Nafion膜以及磺酸化聚醚醚酮酮(SPEEKK)膜內輸送動力學的影響。模擬的系統是由聚合物電解質、質子及包含水和甲醇的溶劑分子所組成。模擬結果顯示含水的SPEEKK膜會比Nafion膜擁有較少的親疏水性相分離,並且SPEEKK膜內形成的水通道也會比Nafion膜內的水通道狹窄。這些特性會造成水分子以及質子在SPEEKK膜內的移動性較低且因此降低了甲醇的擴散係數,進而減少直接甲醇燃料電池內甲醇滲透問題。
1. Williams, K. R., 1966, An Introduction to Fuel Cells, Elsevier Publishing Company, Chap. 1.
2. USDOE, 2004, Fuel Cell Handbook 7th edition, pp. 1-8, Sec. 1.
3. Barbir, F., and Gómez, T., 1996, “Efficiency and Economics of Proton Exchange Membrane (PEM) Fuel Cells,” International Journal of Hydrogen Energy, Vol. 21, No. 10, pp. 891-901.
4. Wang, Z. H., and Wang, C. Y., 2003, “Mathematical Modeling of Liquid-feed Direct Methanol Fuel Cells,” Journal of The Electrochemical Society, Vol. 150, No. 4, pp. A508-A519.
5. Lehmani, A., Durand-Vidal, S., and Turo, P., 1998, “Surface Morphology of Nafion 117 Membrane by Tapping Mode Atomic Force Microscope,” Journal of Applied Polymer Science, Vol. 68, No. 3, pp. 503-508.
6. McLean, R. S., Doyle, M., and Sauer, B. B., 2000, “High-resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques,” Macromolecules, Vol. 33, No. 17, pp. 6541-6550.
7. James, P. J., Elliott, J. A., McMaster, T. J., Newton, J. M., Elliot, A. M. S., Hanna, S., and Miles, M. J., 2000, “Hydration of Nafion Studied by AFM and X-ray Scattering,” Journal of Membrane Science, Vol. 35, No. 20, pp. 5111-5119.
8. Affoune, A. M., Yamada, A., and Umeda, M., 2004, “Surface Observation of Solvent-impregnated Nafion Membrane with Atomistic Force Microscopy,” Langmuir, Vol. 20, No. 17, pp. 6965-6968.
9. Fujimura, M., Hashimoto, T., and Kawai, H., 1981, “Small-angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima,” Macromolecules, Vol. 14, No. 5, pp. 1309-1315.
10. Gierke, T. D., Munn, C. E., Wilson, F. C., and du Pont de, E. I., 1981, “The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-and Small Angle X-ray Studies,” Journal of Polymer Science Part B: Polymer Physics, Vol. 19, No. 11, pp. 1687-1704.
11. Boyle, N. G.., McBrierty, V. J., and Douglass, D. C., 1983, “A Study of the Behavior of Water in Nafion Membranes,” Macromolecules, Vol. 16, No. 1, pp. 75-80.
12. Boyle, N. G.., McBrierty, V. J., and Eisenberg, A., 1983, “NMR Investigation of Molecular Motion in Nafion Membranes,” Macromolecules, Vol. 16, No. 1, pp. 80-84.
13. Schlick, S., Gebel, G., Pineri, M., and Volino, F., 1991, “NMR Spectroscopy of Acid Nafion Membranes and Solutions,” Macromolecules, Vol. 24, No. 12, pp. 3517-3521.
14. Lowry, S. R., and Mauritz, A., 1980, “An Investigation of Ionic Hydration Effects in Perfluorosulfonate Ionomers by Fourier Transform Infrared Spectroscopy,” Journal of The American Chemical Society, Vol. 102, No. 14, pp. 4665-4667.
15. Falk, M., 1980, “An Infrared Study of Water in Perfluorosulfonate (Nafion) Membranes,” Canadian Journal of Chemistry, Vol. 58, No. 14, pp. 1495-1501.
16. Porat, Z., Fryer, J. R., Huxham, M., and Rubinstein, I., 1995, “Electron Microscopy Investigation of the Microstructure of Nafion Films,” The Journal of Physical Chemistry, Vol. 99, No. 13, pp. 4667-4671.
17. Chomakova-Haefke, M., Nyffenegger, R., and Schmidt, E., 1994, “Structure Reorganization in Polymer Films of Nafion Due to Swelling Studied by Scanning Force Microscopy,” Applied Physics A, Vol. 59, No. 2, pp. 151-153.
18. Weber, A. Z., and Newman, J., 2003, “Transport in Polymer-electrolyte Membranes I. Physical Model,” Journal of The Electrochemical Society, Vol. 150, No. 7, pp. A1008-A1015.
19. Paddison, S. J., and Zawodzinski Jr, T. A., 1998, “Molecular Modeling of the Pendant Chain in Nafion,” Solid State Ionics, Vol. 113-115, pp. 333-340.
20. Jinnouchi, R., and Okazaki, K., 2003, “Molecular Dynamics Study of Transport Phenomena in Perfluorosulfonate Ionomer Membranes for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, Vol. 150, No. 1, pp. E66-E73.
21. Spohr, E., Commer, P., and Kornyshev, A. A., 2002, “Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations,” The Journal of Physical Chemistry B, Vol.106, No. 41, pp. 10560-10569.
22. Petersen, M. K., Wang, F., Blake, N. P., Metiu, H., and Voth, G. A., 2005, “Excess Proton Solvation and Delocalization in a Hydrophilic Pocket of the Proton Conducting Polymer Membrane Nafion,” The Journal of Physical Chemistry B, Vol. 109, No. 9, pp. 3727-3730.
23. Li, T., Wlaschin, A., and Balbuena, P. B., 2001, “Theoretical Studies of Proton Transfer in Water and Model Polymer Electrolyte Systems,” Industrial & Engineering Chemistry Research, Vol. 40, No. 22, pp. 4789-4800.
24. Cheng, C. H., and Hong, C. W., 2007, “Investigation of Atomistic Scale Transport Phenomena of the Proton Exchange Membrane Fuel Cell,” Transactions of the ASME, Journal of Fuel Cell Science and Technology, Vol. 4, No. 4, pp. 474-480.
25. Vishnyakov, A., Neimark, A. V., 2001, “Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes,” The Journal of Physical Chemistry B, Vol. 105, No. 39, pp. 9586-9594.
26. Urata, S., Irisawa, J., Takada, A., Shinoda, W., Tsuzuki, S., and Mikami, M., 2005, “Molecular Dynamics Simulation of Swollen Membrane of Perfluorinated Ionomer,” The Journal of Physical Chemistry B, Vol. 109, No. 9, pp. 4269-4278.
27. Blake, N. P., Petersen, M. K., Voth, G. A., and Metiu, H., 2005, “Structure of Hydrated Na-Nafion Membranes,” The Journal of Physical Chemistry B, Vol. 109, No. 51, pp. 24244-24253.
28. Cui, S., Liu, J., Selvan, M.E., Keffer, D. J, Edwards, B. J., and Steele, W. V., 2007, “A Molecular Dynamics Study of a Nafion Polyelectrolyte Membrane and the Aqueous Phase Structure for Proton Transport,” The Journal of Physical Chemistry B, Vol. 111, No. 9, pp. 2208-2218.
29. Cheng, C. H., Chen, P. Y., and Hong, C. W., 2008, “Atomistic Analysis of Hydration and Thermal Effects on Proton Dynamics in the Nafion Membrane,” Journal of The Electrochemical Society, Vol. 155, No. 4, pp. B435-B442.
30. Venkatnathan, A., Devanathan, R., and Dupuis, M., 2007, “Atomistic Simulations of Hydrated Nafion and Temperature Effects on Hydronium Ion Mobility,” The Journal of Physical Chemistry B, Vol. 111, No. 25, pp. 7234-7244.
31. Ren, X., Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 2000, “Methanol Transport through Nafion Membranes: Electro-osmotic Drag Effects on Potential Step Measurements,” Journal of The Electrochemical Society, Vol. 147, No. 2, pp. 466-474.
32. Feichtinger, J., Galm, R., Walker, M., Baumgärtner, K. –M., Schulz, A., Räuchle, E., and Schumacher, U., 2001, “Plasma Polymerized Barrier Films on Membranes for Direct Methanol Fuel Cells,” Surface and Coatings Technology, Vol. 142-144, pp. 181-186.
33. Haubold, H. -G., Jungbluth, T. H., and Hiller, P., 2001, “Nano Structure of Nafion: a SAXS Study,” Electrochimica Acta, Vol. 46, No. 10-11, pp. 1559-1563.
34. Meier, F., Kerres, J., and Eigenberger, G., 2004, “Methanol Diffusion in Water Swollen Ionomer Membranes for DMFC Applications,” Journal of Membrane Science, Vol. 241, No. 1, pp. 137-141.
35. Every, H. A., Hickner, M. A., McGrath, J. E., and Zawodzinski Jr, T. A., 2005, “An NMR Study of Methanol Diffusion in Polymer Electrolyte Fuel Cell Membranes,” Journal of Membrane Science, Vol. 250, No. 1-2, pp. 183-188.
36. Casalegno, A., Grassini, P., and Marchesi, R., 2007, “Experimental Analysis of Methanol Cross-over in a Direct Methanol Fuel Cell,” Applied Thermal Engineering, Vol. 27, No. 4, pp. 748-754.
37. Tschinder, T., Schaffer, T., Fraser, S. D., and Hacker, V., 2007, “Electro-osmotic Drag of Methanol in Proton Exchange Membranes,” Journal of Applied Electrochemistry, Vol. 37, No. 6, pp. 711-716.
38. Vishnyakov, A., and Neimark, A. V., 2000, “Molecular Simulation of Nafion Membrane Solvation in Water and Methanol,” The Journal of Physical Chemistry B, Vol. 104, No. 18, pp. 4471-4478.
39. Vishnyakov, A., and Neimark, A. V., 2001, “Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanol-water Mixture,” The Journal of Physical Chemistry B, Vol. 105, No. 32, pp. 7830-7834.
40. Urata, S., Irisawa, J., Takada, A., Shinoda, W., Tsuzuki, S., and Mikami, M., 2005, “Molecular Dynamics Study of the Methanol Effect on the Membrane Morphology of Perfluorosulfonic Ionomers,” The Journal of Physical Chemistry B, Vol. 109, No. 36, pp. 17274-17280.
41. Urata, S., Irisawa, J., Takada, A., Tsuzuki, S., Shinoda, W., and Mikami, M., 2005, “Intermolecular Interaction between the Pendant Chain of Perfluorinated Ionomer and Methanol,” Journal of Fluorine Chemistry, Vol. 126, No. 9-10, pp. 1312-1320.
42. Carbone, A., Pedicini, R., Portale, G., Longo, A., D’llario, L., and Passalacqua, E., 2006, “Sulphonated Poly(ether ether ketone) Membranes for Fuel Cell Application: Thermal and Structural Characterization,” Journal of Power Sources, Vol. 163, No.1, pp. 18-26.
43. Li, X., Zhao, C., Lu, H., Wang, Z., and Na, H., 2005, “Direct Synthesis of Sulfonated Poly(ether ether ketone ketone)s (SPEEKKs) Proton Exchange Membranes for Fuel Cell Application,” Polymer, Vol. 46, No. 15, pp. 5820-5827.
44. Li, X., Chen, D., Xu, D., Zhao, C., Wang, Z., Lu, H., and Na, H., 2006, “SPEEKK/polyaniline (PANI) Composite Membranes for Direct Methanol Fuel Cell Usages,” Journal of Membrane Science, Vol. 275, No. 1-2, pp. 134-140.
45. Li, X., Hao, X., Xu, D., Zhang, G., Zhang, S., Na, H., and Wang, D., 2006, “Fabrication of Sulfonated Poly(ether ether ketone ketone) Membranes with High Proton Conductivity,” Journal of Membrane Science, Vol. 281, No. 1-2, pp. 1-6.
46. Ise, M., Kreuer, K. D., and Maier, J., 1999, “Electroosmotic drag in polymer electrolyte membranes: an electrophoretic NMR study,” Solid State Ionics, Vol. 125, No. 1-4, pp. 213-223.
47. Jiang, R., Kunz, H. R., and Fenton, J. M., 2005, “Investigation of Membrane Property and Fuel Cell Behavior with Sulfonated Poly(ether ether ketone) Electrolyte: Temperature and Relative Humidity Effects,” Journal of Power Sources, Vol. 150, pp. 120-128.
48. Li, X., Liu, C., Lu, H., Zhao, C., Wang, Z., Xing, W., and Na, H., 2005, “Preparation and Characterization of Sulfonated Poly(ether ether ketone ketone) Proton Exchange Membranes for Fuel Cell Application,” Journal of Membrane Science, Vol. 255, No. 1-2, pp. 149-155.
49. Li, X., Zhang, G., Xu, D., Zhao, C., and Na, H., 2007, “Morphology Study of Sulfonated Poly(ether ether ketone ketone)s (SPEEKK) Membranes: The Relationship between Morphology and Transport Properties of SPEEKK Membranes,” Journal of Power Sources, Vol. 165, No. 2, pp. 701-707.
50. Paddison, S. J., 2001, “The Modeling of Molecular Structure and Ion Transport in Sulfonic Acid Based Ionomer Membranes,” Journal of New Materials for Electrochemical Systems, Vol. 4, pp. 197-207.
51. Paddison, S. J., Paul, R., and Kreuer, K.D., 2002, “Theoretically Computed Proton Diffusion Coefficients in Hydrated PEEKK Membranes,” Physical Chemistry Chemical Physics, Vol. 4, pp. 1151-1157.
52. Hypercube Inc, 2002, HyperChem reference manual, pp. 296.
53. Agmon, N., 1995, “The Grotthuss mechanism,” Chemical Physics Letter, Vol. 244, pp. 456-462.
54. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., 1987, “The Missing Term in Effective Pair Potentials,” The Journal of Physical Chemistry, Vol. 91, No. 24, pp. 6269-6271.
55. Jorgensen, W. L., 1986, “Optimized Intermolecular Potential Functions for Liquid Alcohols,” The Journal of Physical Chemistry, Vol. 90, No. 7, pp. 1276-1284.
56. Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J., 1996, “Development and Testing of the OPLS All-atom Force Field on Conformational Energetics and Properties of Organic Liquids,” Journal of the American Chemical Society, Vol. 118, pp. 11225-11236.
57. Burykin, A., and Warshel, A., 2003, “What Really Prevents Proton Transport through Aquaporin? Charge Self-energy versus Proton Wire Proposals,” Biophysical Journal, Vol. 85, No. 6, pp. 3696-3706.
58. Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Oxford Science Publication, pp. 156, Chap. 5.
59. Mayo, S. L., Olfason, B. D., and Goddard, W. A., 1990, “DREIDING: A Generic Force Field for Molecular Simulations,” The Journal of Physical Chemistry, Vol. 94, No. 26, pp. 8897-8909.
60. Smith, W., Leslie, M., and Forester, T. R., 2003, The Dlpoly_2 User Manual, CCLRC, Daresbury Laboratory.
61. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., DiNola, A., and Haak, J. R., 1984, “Molecular Dynamics with Coupling to an External Bath,” Journal of Chemical Physics, Vol. 81. No. 8, pp. 3684-3690.
62. Verlet, L., 1967, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Physical Review, Vol. 159, No. 1, pp. 98-103.
63. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, “Numerical Integration of the Cartesian Equations of Motion of a System with Constrains: Molecular Dynamics of n-Alkanes,” Journal of Computational Physics, Vol. 23, pp. 327-341.
64. Morris, D. R., and Sun, X., 1993, “Water-sorption and Transport Properties of Nafion 117 H,” Journal of Applied Polymer Science, Vol. 50, No. 8, pp. 1445-1452.
65. Kreuer, K. D., 2001, “On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,” Journal of Membrane Science, Vol. 185, No. 1, pp. 29-39.
66. Zawodzinski, T.A., Neeman, M., Sillerud, L.O., and Gottesfeld, S., 1991, “Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes,” The Journal of Physical Chemistry, Vol. 95, No. 15, pp. 6040-6044.