研究生: |
陳裕和 Yu-ho Chen |
---|---|
論文名稱: |
利用紅外線光譜技術研究磷脂水解酵素A2在脂質單分子薄膜上的結合模式與酵素活性之相互關係 ATR-FTIR investigation on the relationship between the binding mode and enzyme activity in phospholipase A2 - lipid monolayer interaction. |
指導教授: |
吳文桂
Wen-guey Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 紅外線光譜 、磷脂水解酵素A2 、單分子薄膜 |
外文關鍵詞: | FTIR, phospholipase A2, monolayer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣眼鏡蛇毒中含有三種主要的成份:神經毒素,心臟毒素與磷脂水解酵素A2。其中磷脂水解酵素 A2會水解脂質sn-2的位置而產生脂肪酸鏈與脫脂酸磷脂質,對於細胞膜也有相當的破壞力,因此研究磷脂水解酵素A2與脂質的結合模式與酵素活性的關係是一個相當重要的課題。在本論文中利用霍式轉換紅外線光譜儀與單分子薄膜技術,來研究蜜蜂毒素與台灣眼鏡蛇毒中的兩種磷脂水解酵素A2與脂質在不同的表面壓力下的結合模式及酵素活性的關係,我們以不會被酵素水解的脂質(diether-PC14)所形成的單分子薄膜所進行的實驗發現,磷脂水解酵素A2結合在不同表面壓力下的單分子薄膜時不僅結合的數量隨著壓力的上升而逐漸減少,酵素的截面積也隨著下降。同時利用偏極化霍式轉換紅外線光譜的雙色比值來決定磷脂水解酵素A2與單分子薄膜結合時候的方位,我們發現磷脂水解酵素A2在不同的表面壓力下仍然具有相近的結合角度,也因此可以推論出結合深度隨著脂質表面壓力的上升而變淺。為了了解插入深度與磷脂水解酵素A2活性之關連性,利用DMPC脂質單分子薄膜在加入磷脂水解酵素A2後,我們可以從薄膜上的壓力變化了解單分子薄膜被水解的速率。結果顯示酵素活性在不同薄膜壓力下有一最大值,在台灣眼鏡蛇與蜜蜂毒素的磷脂水解酵素A2分別在壓力18mN/m與24mN/m的時候有其最大的活性,而兩者在活性最大的時候所插入深度皆為2±1Å,表示插入深度很小的時候才會有最大活性。此小的截面積及插入深度才具有最大酵素活性的現象可能是因為在此狀態下的脂質沒有被酵素推開而較易擴散至活性區域,而當壓力太大時磷脂水解酵素A2結合的數量又太少而使總水解活性因此下降。
Abstract
There are three major components of Taiwan Cobra venom: neurotoxin, cardiotoxin and phospholipase A2. Among them, Phospholipase A2 hydrolyzes phospholipids sn-2 position and thus produce fatty acid chain and lysophospholipid. Phospholipase A2 is also destructive to cell membrane. Therefore, it is important to study the binding mode and enzyme activity of phospholipase A2 and lipid. This study focused on binding model and enzyme activity of both bee venom phospholipase A2 and Taiwan cobra phospholipase A2 under different surface pressure by using FTIR-spectrum and monolayer. In the experiment of phospholipase A2 and diether-PC14 monolayer binding, the amount of binding lipid and the area of enzyme cross section both decrease while pressure increases. In addition, the orientation of phospholipase A2 and monolayer binding was determined by polarized FTIR-spectrum dichroic ratio. It was discovered that the orientation of binding was similar under different surface pressure but the penetration depth will decrease while surface pressure increases. DMPC monolayer was used to understand the relationship between enzyme activity and penetration. The pressure alteration shows the hydrolyzed rate of monolayer. The result showed that there was a maximum enzyme activity under different surface pressure. The enzyme activities of Taiwan Cobra venom and bee venom will reach the maximum when pressure is 18mN/m and 24mN/m separately. In the meantime, penetration of both enzymes is 2±1Å. This shows that there will be maximum enzyme activity only when penetration is peripheral. It was suggested that when penetration is peripheral, lipid might not be excluded by enzyme so lipid might diffuse to active site easily. Hence, when pressure is high and phospholipase A2 and monolayer binding is little, enzyme activity will decrease.
參考文獻
1. Hodges, S.J., Agbaji, A.S., Harvey, A.L. and Hider, R.C. (1987) Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. 165, 373-383.
2. Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95.
3. Zusman, N., Miklas, T.M., Graves, T., Dambach, G.E. and Hudson, R.A. (1984) On the interaction of cobra venom protein cardiotoxins with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636.
4. Chen, Y.H., Hu, C.T. and Yang, J.T. (1984) Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem. In. 8, 329-338.
5. Kini, R.M. and Evans, H.J. (1989) Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity. Biochemistry 28, 9209-9215.
6. Liou, R.F., Chang, W.C., Chu, S.T. and Chen, Y.H. (1993) Snake venom cardiotoxin can rapidly induce actin polymerization in intact platelets. Biochem. J. 290, 591-594.
7. Servent, D., Winckler-Dietrich, V., Hu, H.Y, Kessler, P., Drevet, P., Bertrand, D. and Menez, A. (1997) J. Biol. Chem. 272, 24279-24286.
8. Pan, F.M., Chang, W.C. and Chiou, S.H. (1994) cDNA and protein sequences coding for the precursor of phospholipase A2 from Taiwan cobra, Naja naja atra. Biochem. Mol. Biol. Int. 33, 187-194.
9. Hanahan, D.J. (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483-509.
10. Lambeau, G. and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170.
11. John, W. and Sons. (1997) Venom Phospholipase A2 Enzymes:structure, function and mechanism.
12. Fleer, E.A., Verheij, H.M., de Haas, G.H. (1981) Modification of carboxylate groups in bovine pancreatic phospholipase A2. Identification of aspartate-49 as Ca2+-binding ligand. Eu.r J. Biochem. 113, 283-288.
13. van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., de Haas, G.H. (1988) The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. Eur. J. Biochem. 176, 353-357.
14. Ward, R.J., Chioato, L., de Oliveira, A.H., Ruller, R., Sa, J.M. (2002) Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem. J. 362, 89-96.
15. Shimohigashi, Y., Tani, A., Yamaguchi, Y., Ogawa, T., Ohno, M. (1996) Discriminatory recognition of membrane phospholipids by lysine-49- phospholipases A2 from Trimeresurus flavoviridis venom. J. Mol. Recognit. 9, 639-643.
16. Zuliani, J.P., Fernandes, C.M., Zamuner, S.R., Gutierrez, J.M., Teixeira, C.F. (2005) Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity. Toxicon. 45, 335-346.
17. Hazen, S.L. and Gross, R.W. (1991) ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J. Biol. Chem. 266, 14526-14534.
18. Rao, C.S. and Damodaran, S. (2004) Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity. Colloids Surf. B. Biointerfaces. 34, 197-204.
19. Cajal, Y., Berg, O.G. and Jain, M.K.(2004) Origins of delays in monolayer kinetics: phospholipase A2 paradigm. Biochemistry 43, 9256-9264.
20. Slotboom, A.J. and de Haas, G.H. (1975) Specific transformations at the N-terminal region of phospholipase A2. Biochemistry 14, 5394-5399.
21. Waite, M., (1966) Biochemistry of lipid :lipoprotein and membrane, p201-214 Plenum Press, New York
22. Burack, W.R., Dibble, A.R., Allietta, M.M. and Biltonen, R.L. (1997) Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry 36, 10551-10557.
23. Reichert, A., Ringsdorf, H. and Wagenknecht, A. (1992) Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim. Biophys. Acta 1106, 178-188.
24. Bollinger, J.G., Diraviyam, K., Ghomashchi, F., Murray, D. and Gelb, M.H. (2004) Interfacial binding of bee venom secreted phospholipase A2 to membranes occurs predominantly by a nonelectrostatic mechanism. Biochemistry 43, 13293-13304.
25. 洪水根,汪德耀(1997)膜分子生物學,水產出版社
26. Vollhardt, D., Fainerman, V.B. (2000) Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci. 86, 103-151.
27. Mukhopadhyay, S. and Cho, W. (1996) Interactions of annexin V with phospholipidmonolayers. Biochim. Biophys. Acta 1279, 58-62.
28. Petty, and M.C. (1996) Langmuir-Blodgett films. An introduction. Cambridge University press
29. Bar, L.K., Barenholz, Y. and Thompson, T.E. (1997) Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36, 2507-2516.
30. Rintoul, D.A. and Welti, R. (1989) Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry 28, 26-31.
31. Kampf, J.P., Frank, C.W., Malmstrom, E.E. and Hawker, C.J. (1999) Adaptation of bulk constitutive equations to insoluble monolayer collapse at the air-water interface. Science 283, 1730-1733.
32. Jones, M.N. and Dennis, Chapman. (1994) Micelles,monolayers,and biomembranes.
33. Doisy, A., Proust, J.E., Ivanova, Tz., Panaiotov, I. And Dubois, J.L. (1996) Phospholipid/Drug interactions in liposomes studied by rheological properties of monolayers. Langmuir 12, 6098-6103
34. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipids 70, 75-81.
35. Phillips, M.C., Graham, D.E. and Hauser, H. (1975) Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature 254, 154-156.
36. Brezesinski, G. and Mohwald, H. (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 100-102, 563-584.
37. Blume, A. (1979) A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta 557, 32-44.
38. Davies, R.J. and Jones, M.N. (1992) The thermal behaviour of phosphatidylcholine-glycophorin monolayers in relation to monolayer and bilayer internal pressure. Biochim. Biophys. Acta 1103, 8-12.
39. Tamm, L.K. and Tatulian, S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 30, 365-429.
40. Surewicz, W.K., Mantsch, H.H. and Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394.
41. Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 263, 786-790.
42. Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol. Chem. 278, 21980-21988.
43. Tatulian, S.A., Biltonen, R.L. and Tamm, L.K. (1997) Structural changes in secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J. Mol. Biol. 268, 809-815
44. Lin, Y.H., Huang, W.N., Lee, S.C. and Wu, W.G. (2000) Heparin reduces the alpha-helical content of cobra basic phospholipase A(2) and promotes its complex formation. Int. J. Biol. Macromol. 27, 171-176.
45. Goormaghtigh, E., Raussens, V., and Ruysschaert, J.M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta 1422, 105-185.
46. Harrick, N.J.(1979) Internal reflection spectroscopy. Ossining, New York.
47. Okamura, E., Umemura, J. and Takenaka, T. (1990) Orientation studies of hydrated dipalmitoylphosphatidylcholine multibilayers by polarized FTIR-ATR spectroscopy. Biochim. Biophys. Acta 1025, 94-98.
48. Vinchurkar, M.S., Chen, K.H., Yu, S.S., Kuo, S.J., Chiu, H.C., Chien, S.H. and Chan, S.I. (2004) Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase. Biochemistry 43, 13283-13292.
49. Oberg, K.A. and Fink, A.L. (1998) A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal. Biochem. 256, 92-106.
50. Marsh, D., Muller, M. and Schmitt, F.J. (2000) Orientation of the infrared transition moments for an alpha-helix. Biophys. J. 78, 2499-2510.
51. Marsh, D. (1997) Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys. J. 72, 2710-2718.
52. Ter-Minassian-Saraga, L., Okamura, E., Umemura, J. and Takenaka, T. (1988) Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim. Biophys. Acta 946, 417-423.
53. Tatulian, S.A. (2001) Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys. J. 80, 789-800.
54. Huang, W.N., Sue, S.C., Wang, D.S., Wu, P.L. and Wu, W.G.. (2003) Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry 42,7457-7466.
55. Qin, S., Pande, A.H., Nemec, K.N. and Tatulian, S.A. (2004) The N-terminal alpha-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface. J. Mol. Biol. 344, 71-89.
56. Frey, S. and Tamm, L.K. (1991) Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J. 60, 922-930.
57. Okamura, E., Umemura, J. and Takenaka, T. (1986) Orientation of gramicidin D incorporated into phospholipid multibilayers: a Fourier transform infrared-attenuated total reflection spectroscopic study. Biochim. Biophys. Acta 856, 68-75
58. Marsh, D. (1998) Nonaxiality in infrared dichroic ratios of polytopic transmembrane proteins. Biophys. J. 75, 354-358.
59. Pan, Y.H., Epstein, T.M., Jain, M.K. and Bahnson, B.J. (2001) Five coplanar anion binding sites on one face of phospholipase A2: relationship to interface binding. Biochemistry 40, 609-617.
60. Yokoyama, S. and Kezdy, F.J. (1991) Monolayers of long chain lecithins at the air/water interface and their hydrolysis by phospholipase A2. J. Biol. Chem. 266, 4303-4308.
61. Maloney, K.M., Grandbois, M., Grainger, D.W., Salesse, C., Lewis, K.A. and Roberts. M.F. (1995) Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochim. Biophys. Acta 1235, 395-405.
62. Maget-Dana, R. (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta 1462, 109-140.
63. Dorset, D.L. (1987) Molecular packing of a crystalline ether-linked phosphatidylcholine: an electron diffraction study. Biochim. Biophys. Acta 898, 121-128.
64. Grandbois, M., Desbat, B. and Salesse, C. (2000) Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Biophys. Chem. 88, 127-135.
65. Marsh, D. (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys. J. 77, 2630-2637.
66. Lin, Y., Nielsen, R., Murray, D., Hubbell, W.L., Mailer, C., Robinson, B.H. and Gelb, M.H. (1998) Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. Science 279, 25-29.
67. Grainger, D.W., Reichert, A., Ringsdorf, H., Salesse, C., Davies, D.E. and Lloyd, J.B. (1990) Biochim. Biophys. Acta 1022, 146-154.
68. Jain, M.K., Ranadive, G., Yu, B.Z. and Verheij, H.M. (1991) Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry 30, 7330-7340.
69. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipid 70, 75-81.
70. Stahelin, R.V. and Cho W. (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40, 4672-4678.
71. Sumandea, M., Das, S., Sumandea, C. and Cho, W. (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38, 16290-16297.
72. Lee, W.H., da Silva Giotto, M.T., Marangoni, S., Toyama, M.H., Polikarpov, I. and Garratt, R.C. (2001) Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid. Biochemistry. 40, 28-36.