簡易檢索 / 詳目顯示

研究生: 高武群
Wu-Chun Gau
論文名稱: 有機金屬化學氣相沉積氮化鈦、氮化鈮與氮化(鈦) 鈮薄膜在銅金屬化製程及低介電材料之應用研究
Investigation of Metallorganic Chemical Vapor Deposited Metal Nitride Films ( TixCyNz, NbNxCyOz,TaxNb(1-x)NyCmOn ) as Diffusion Barriers for the Integration of Low-k Dielectrics
指導教授: 陳力俊
Lih-Juann Chen
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 134
中文關鍵詞: 化學氣相沉積擴散障礙層低介電材料氮化鈦氮化鈮氮化(鈦) 鈮
外文關鍵詞: Chemical Vapor Deposited, Diffusion Barrier film, Low-k Dielectrics, TixCyNz, NbNxCyOz, TaxNb(1-x)NyCmOn, Copper
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著銅金屬化製程與低介電材料引入半導體製程中,發展一低溫製程的金屬阻障層研究將扮演相當重要的角色。本研究採用有機金屬化學氣相沈積法(MOCVD)沉積金屬阻障層,利用有機金屬化合物與NH3氣體進行反應,成長所要的氮化鈦(TixCyNz)、氮化鈮(NbNxOyCz)與氮化(鈦)鈮 [NbxTa(1-x)NyOmCn] 擴散阻障層薄膜,並研究其整合在銅金屬製程與低介電材料上的應用。
    實驗結果顯示,利用TDMAT為前驅物與NH3反應,可在300度C以上生成均勻的TixCyNz金屬阻障層,為了降低TixCyNz薄膜的電阻值,我們探討多層成長方式之薄膜性質,多層成長方式是薄膜每成長約20 nm後,經以Ar/NH3電漿表面處理三分鐘,如此反覆至所需厚度。以多層成長方式之薄膜電阻值僅約為直接成長方式之薄膜的一半,在325-350度C下成長薄膜,電阻值可達540□□□.□cm。經由此種電漿表面處理,TixCyNz薄膜的氧含量從原來的22% 降至10%,而碳原子的含量則維持在 10% 上下。而從XRD與TEM的分析,可得知薄膜的結構接近為非晶質相。TixCyNz經過500度C退火30分鐘後,可以有效的降低電阻值及薄膜中碳含量,並促進結晶產生。將此金屬障礙層作一銅金屬製程與低介電材料methylsilsesquioxane (MSQ) 整合研究發現,36 nm厚的TixCyNz薄膜,在退火溫度700 oC 30分鐘後,仍可保持其擴散阻障層的性質。但TixCyNz薄膜下層低介電材料 MSQ ,在高溫時 (> 500度C) 會產生劣化損毀現象,造成MSQ中的碳與氧原子會往TixCyNz阻障層擴散。而在退火600度C一個小時的條件下,MSQ中的氧原子會完全擴散穿過TixCyNz擴散阻障層,造成高電阻值氧化銅的形成。

    我們以EtN=Nb (NEt2)3為前驅物,在反應溫度500 - 600度C下,沈積出接近非晶狀態之NbNxOyCz薄膜,表面反應的活化能為68.40 ± 4.82 kJ/mol。我們亦以EtN=Nb (NEt2)3加入NH3參與反應,在沈積溫度降至300 - 425 oC間進行薄膜沈積,反應的活化能降為22.16 ± 3.85 kJ/mol。薄膜的成分分析可知,加入NH3氣體參與反應可使C含量也大量下降,同時N與Nb的比值也從1.67降至1.1。為了降低薄膜的電阻率,我們探討多層成長方式之薄膜性質,多層成長方式是薄膜每成長約10 nm後,以Ar/NH3電漿處理表面3分鐘,如此反覆至所需厚度。經由多層成長方式的NbNxOyCz薄膜,我們發現薄膜的電阻率與C、O含量皆明顯減少。在銅金屬的擴散研究,50 nm厚的NbNxOyCz薄膜,在退火溫度600度C 30分鐘下,仍可保持擴散阻障層的性質。

    另一方面研究果顯示,以TDEAN和PDEAT混合為前驅物,在直接利用熱分解方式下,沉積溫度控制在500 - 600度C,沈積出高電阻值及三元非晶質狀態之NbxTa(1-x)NyOmCn擴散阻障層薄膜,反應活化能為79.1 ± 4.8 kJ/mol。我們利用NH3 氣體加入參與反應,反應活化能降為33.8 ± 2.1 kJ/mol,並使得沉積溫度降低至375度C,薄膜中的碳含量也明顯降低。經由實驗結果顯示,以此種混合兩種先驅物方式,沉積出的NbxTa(1-x)NyOmCn擴散阻障層薄膜,雖具有很好的非晶質結構,但卻呈現出高電阻值及不穩定的狀態。其在反應過程中或曝露在有氧氣的環境中,很容易吸附氧氣,造成電阻值明顯地上升。實驗中發現,藉由Ar/NH3電漿表面處理,可以有效地降低薄膜吸氧量,從19% 降低至11% 左右。


    Metal organic chemical vapor deposition (MOCVD) TixCyNz films were deposited using tetrakis-dimethylamino-titanium (TDMAT) and NH3 as a reaction gas at 325 - 400 oC with Ar/NH3 plasma treatments. Effects of annealing and the subsequently performed Ar/NH3 plasma treatment on the microstructure, composition, and electrical properties of these films were investigated. TixCyNz barrier films were found to be nano-crystalline. Thermal annealing can decrease the reisitivity drastically after annealing above 500 oC, by reducing the concentration of carbon and induce the grain growth. <200> texture was found to increase. By multilayer plasma treatment, the resistivity of TixCyNz thin films decreased from 960 to 548 μΩ • cm with a decrease in the concentration of oxygen in barrier films. The plasma treatment can also remove partially the organic residue and induce crystallization at the surface of the as-deposited nano-crystalline TixCyNz films. Inter-diffusions in the Cu/CVD-TixCyNz/SiO2 and Cu/CVD-TixCyNz/methylsilsesquioxane (MSQ) multilayer structures on silicon wafer after annealing in furnace at 500 to 800 oC have also been investigated. With thermal annealing in N2 ambient for 30 min, Cu/CVD-TixCyNz/MSQ structure was found to be metallurgically stable up to 700 oC.
    Amorphous NbNxOyCz films were deposited by MOCVD using ethylimidotris-(diethylamido)niobium(V) [Nb=NEt(NEt2)3] source with and without NH3 at various temperatures. The diffusion barrier properties of NbNxOyCz films for Cu metallization were investigated. Both deposition temperature and resistivity of the film were found to decrease drastically upon the addition of NH3. The activation energy for the surface reaction was measured to be 68.40 ± 4.82 kJ/mol in the temperature range of 500 - 600 oC and decreased to 22.16 ± 3.85 kJ/mol by adding 20 sccm NH3 in the temperature range of 300 - 425 oC. The resistivities of the films deposited at the temperatures ranging form 300 to 400 oC are as high as 15,000 □□□• cm. The resistivities of multilayer deposited NbNxCyOz films were significantly reduced to about 2,200 □□□•□cm.

    The NbNxOyCz films were found to be nearly amorphous. The concentration of C in films was reduced significantly and the concentration ratio of N to Nb was varied from 1.67 to 1.1 by using NH3 as a reactant gas. 50-nm-thick NbNxOyCz film was found to effectively prevent the penetration of Cu into the substrate in samples annealed at 600 oC for 1 hr. The barrier failure mechanism in NbNxOyCz is the diffusion of Cu through the barrier layer with the formation of niobium silicide.

    On the other hand, ternary NbxTa(1-x)NyOmCn diffusion barriers deposited by CVD for copper metallization have been investigated. The barriers were deposited at 375 ℃ with tetrakis-diethylamido-niobium (TDEAN) and pentakis-diethylamido-tantalum (PDEAT) as precursors. Amorphous thin films can be obtained by thermal deposition at temperatures from 500 to 600 ℃. The activation energy of the MOCVD process was determined to be 79.1 □ 4.8 kJ/mol. By the incorporation of NH3 gas into reactants, both MOCVD deposition temperature and carbon concentration in the NbxTa(1-x)NyOmCn films were reduced. In addition, Ar/NH3 plasma post-treatment was implemented to prevent oxygen from being introduced into the barrier films.

    Amorphous NbxTa(1-x)NyOmCn barrier films were deposited with high resisivity and showed unstable state, especially exposed to oxygen ambient. It is proposed that NbxTa(1-x)NyOmCn films grown by MOCVD may embed in porous structure, which causes film properties to vary on exposure to oxygen ambient. The barrier films are of rather high resisivity. It is likely that NbxTa(1-x)NyOmCn diffusion barrier included a high density of impurities like oxygen and carbon in the deposited process. In addition, the amorphicity also leads to high resistivity.

    Chinese Abstract ----------------------------------------------------------- I English Abstract ---------------------------------------------------------- IV Acknowledgments ------------------------------------------------------- VII Contents ------------------------------------------------------------------ IX Chapter 1: Introduction 1.1 Processing Issues for Metal Interconnects ------------ 1 1.2 Organization of the Thesis ------------------------------ 7 Chapter 2: Characterization of CVD TixCyNz Films Deposited as Diffusion Barrier for the Integration of Low-k Dielectric Methylsilsesquioxane (MSQ) 2.1 Introduction ----------------------------------------------- 9 2.2 Experimental Procedures ------------------------------ 14 2.3 Results and Discussion -------------------------------- 17 Chapter 3: Characteristics of Metal-organic Chemical Vapor Deposited NbNxOyCz Films as Diffusion Barrier for Copper Metallization 3.1 Introduction --------------------------------------------- 27 3.2 Experimental Procedures ------------------------------- 30 3.3 Results and Discussion ---------------------------------- 32 Chapter 4: Metal-organic Chemical Vapor Deposition of NbxTa(1-x)NyOmCn Films as Diffusion Barriers for Cu Metallization 4.1 Introduction --------------------------------------------- 36 4.2 Experimental Procedures ------------------------------ 40 4.3 Results and Discussion -------------------------------- 41 Chapter 5: Summary and Conclusions 5.1 Characterization of CVD TixCyNz Films Deposited as Diffusion Barriers for the Integration of Low-k Dielectric MSQ ------------------------------------------ 45 5.2 Characteristics of Metal-organic Chemical Vapor Deposited NbNxOyCz Films as Diffusion Barrier for Copper Metallization ------------------------------- 46 5.3 Metal-organic Chemical Vapor Deposition of NbxTa(1-x)NyOmCn Films as Diffusion Barriers for Cu Metallization ------------------------------------ 47 Chapter 6: Suggestions for Future Works --------------------------- 49 References ------------------------------------------------------------------ 51 List of Table ---------------------------------------------------------------- 70 Figure Captions ----------------------------------------------------------- 71 Publications List --------------------------------------------------------- 131 Vita ------------------------------------------------------------------------- 134

    Chapter 1
    1. S. P. Murarka and S. W. Hymes, “Copper Metallization for ULSI and Beyond,” Critical Reviews in Solid State and Materials Science 20, 87-124 (1995)
    2. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P.C. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, “Copper dual damascene wiring for sub-0.25 □m CMOS technology,” Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, 151-153.
    3. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L.Y. Chen, S. Ramaswami, and D. Carl, “Properties of copper films prepared by chemical vapor deposition for advanced metallization of microelectronic devices”, J. Electrochem. Soc. 146, 3248-3254 (1999).
    4. S. Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, and T. Lii, “Integration of multi-level copper metallization into a high performance sub-0.25 □m CMOS technology,” Devices, Circuits and Systems, 1998. Proceedings of the 1998 Second IEEE International Caracas Conference, 1998, 146-152.
    5. A. Deutsch, H. Smith, G. V. Kopcsay, D. C. Edelstein, and P. W. Coteus, “On-chip wiring design challenges for GHz operation”, Electrical Performance of Electronic Packaging, Piscataway, New Jersey, 45-48 (1999) .
    6. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications,” Microelectronic Engineering 50, 375-381 (2000).
    7. P. C. Andricacos, “Copper on-chip interconnections,” Interface (USA), Spring, 32-37 (1999).
    8. M. T. Bohr, “Interconnect scaling – the real limiter to high performance ULSI,” International Electron Devices Meeting. Technical Digest, 241-244 (1995)
    9. M. T. Bohr and Y. A. El-Mansy, “Technology for advanced high-performance microprocessors,” IEEE Trans. Electron Dev. 45, 620-625 (1998).
    10. L. C. Parrillo, “Issues in developing a manufacturable interconnect tecnnology,” Advanced Metallization for ULSI Application in 1994, 3-16 (1994).
    11. C. G. Cruzan and H. A. miley, “ Cuprous-Cupric oxide films on copper,” J. Appl. Phys. 11, 631-634 (1940).
    12. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 2nd Edition, John Wiley & Sons, Inc., 1-56 (1986).
    13. K. Hinode, Y. Homma, M. Horiuchi, and T. Takahashi, “Morphology-dependent oxidation behavior of reactively sputtered titanium-nitride films,” J. Vac. Sci. Technol. A 15, 2017-2022 (1997).
    14. A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163-169 (1996).
    15. Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J. D. Luttmer, and R. H. Havemann, “Integrated barrier/plug fill schemes for high aspect ratio Gb DRAM contact metallization,” Thin Solid Films 320, 73-76 (1998).
    16. S. K. Lakshmanan and W. N. Gill, “A novel model of hydrogen plasma assisted chemical vapor deposition of copper,” Thin Solid Films 338, 24-39 (1999).
    17. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Effect of the gas-phase reaction in metallorganic chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium,” J. Electrochem. Soc. 145, 2453-2456 (1998).
    18. K. M. Takahashi, “Electroplating copper onto resistive barrier films,” J. Electrochem. Soc. 147, 1414-1417 (2000).
    19. K. M. Takahashi and M. E. Gross, “Transport phenomena that control electroplated copper filling of submicron vias and trenches,” J. Electrochem. Soc. 146, 4499-4503 (1999).
    20. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147, 4524-4535 (2000).
    21. C. T. Chua, G. Sarkar, and X. Hu, “In situ characterization of methylsilsesquioxane curing,” J. Electrochem. Soc. 145, 4007-4011 (1998).
    22. M. J. Loboda, C. M. Grove, R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145, 2861-2865 (1998).
    23. C. Hu, M. Morgen, P. S. Ho, A. Jain, W. N. Gill, J. L. Plawsky, P. C. Wayner, “Thermal conductivity study of porous low-k dielectric materials,” Appl. Phys. Lett. 77, 145-147 (2000).
    24. Y. Uchida, T. Katoh, S. Sugahara, M. Matsumura, “Chemical vapor deposition based preparation on porous silica films,” Jpn. J. Appl. Phys. Lett. 39, 1155-1157 (2000).
    Chapter 2
    1. J. Heidenreich, D. Edelstein, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, T. McDevitt, A. Stamper, A. Simon, J. Dukovic, P. C. Andricacos, R. Wachnik, H. Rathore, T. Katsetos, P. McLaughlin, S. Luce, and J. Slattery, “Copper dual damascene wiring for sub-0.25 □m CMOS technology,” Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, 151-153.
    2. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L.Y. Chen, S. Ramaswami, and D. Carl, “Properties of copper films prepared by chemical vapor deposition for advanced metallization of microelectronic devices,” J. Electrochem. Soc. 146, 3248-3254 (1999).
    3. S. Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, and T. Lii, Devices, “Integration of multi-level copper metallization into a high performance sub-0.25 □m CMOS technology,” Circuits and Systems, 1998. Proceedings of the 1998 Second IEEE International Caracas Conference, 1998, 146-152.
    4. A. Deutsch, H. Smith, G. V. Kopcsay, D. C. Edelstein, and P. W. Coteus, “On-chip wiring design challenges for GHz operation,” Electrical Performance of Electronic Packaging, Piscataway, New Jersey, 45-48 (1999).
    5. R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications,” Microelectronic Engineering 50, 375-381 (2000).
    6. S. R. Kurtz, and R. G. Gordon, “Chemical Vapor-Deposition of Titanium Nitride at Low-Temperatures,” Thin Solid Films 140, 277-290 (1986).
    7. N. Yokoyama, K. Hinode, and Y. Homma, “LPCVD titanium nitride for ULSIs,” J. Electrochem. Soc. 138, 190-195 (1991).
    8. M. J. Buiting, and A. F. Otterloo, “Relationship between the process parameters and film properties of "low temperature" low-pressure chemical vapor deposition titanium nitride films,” J. Electrochem. Soc. 139, 2580-2584 (1992).
    9. R. I. Hegde, R. W. Fiordalice, E. O. Travis, and P. J. Tobin, “Thin film properties of low-pressure chemical vapor deposition TiN barrier for ultra-large-scale integration applications,” J. Vac. Sci. Technol. B 11 (4), 1287-1296 (1993).
    10. Y. J. Mei, T. C. Chang, J. C. Hu, L. J. Chen, Y. L. Yang, F. M. Pan, W. F. Wu, A. Ting, and C. Y. Chang, “Characterization of TiN film grown by low-pressure chemical-vapor-deposition,” Thin Solid Films 308, 594-598 (1997).
    11. C. Faltermeier, C. Goldberg, M. Jones, A. Upham, D. Manger, G. Peterson, J. Lau, A. E. Kaloyeros, B. Arkles, and A. Paranjpe, ”Barrier properties of titanium nitride films grown by low temperature chemical vapor deposition from titanium tetraiodide,” J. Electrochem. Soc. 144, 1002-1007 (1997).
    12. C. G. Faltermeier, C. Goldberg, and M. Jones, A. Upham, A. Knorr, A. Ivanova, G. Peterson, A. E. Kaloyeros and B. Arkles, “The effects of processing parameters in the low-temperature chemical vapor deposition of titanium nitride from tetraiodotitanium,” J. Electrochem. Soc. 145, 676-682 (1998).
    13. M. Eizenberg, “Chemical-vapor-deposition of tin for sub-0.5-mu-m ULSI circuits,” MRS Bull. 20, 38-41 (1995)
    14. R. M. Fix, R. G. Gordon, and D. M. Hoffman, “Synthesis of thin-films by atmospheric-pressure chemical vapor-deposition using amido and imido titanium(iv) compounds as precursors,” Chem. Mater. 2 235-241 (1990)
    15. R. M. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical vapor deposition of titanium, zirconium, and hafnium nitride thin-films,” Chem. Mater. 3, 1138-1148 (1991).
    16. I. J. Raaijmakers, “Low-temperature metal-organic chemical-vapor- deposition of advanced barrier layer for the microelectronics industry,” Thin Solid Films 247, 85-93 (1994).
    17. S. C. Sun, and M. H. Tsai, “Comparison of chemical-vapor-deposition of tin using tetrakis-diethylamino-titanium and tetrakis-dimethylamino titanium,” Thin Solid Films 253, 440-444 (1994).
    18. D. H. Kim, J. J. Kim, J. W. Park, and J. J. Kim, “Stability of TiN films prepared by chemical vapor deposition using tetrakis-dimethylamino titanium,” J. Electrochem. Soc. 143, L188-L190 (1996).
    19. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Effect of the gas-phase reaction in metallorganic chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium,” J. Electrochem. Soc. 145, 2453-2455 (1998).
    20. K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisako, and Y. Tarui, “Characterization of CVD-TiN films prepared with metalorganic source,” Jpn. J. Appl. Phys. 29, 2103-2105 (1990).
    21. A. Katz, A. Feingold, S. Nakahara, S. J. Pearton, E. Lane, M. Geva, F. A. Stevie, and K. Jones, “The influence of ammonia on rapid-thermal low-pressure metalorganic chemical vapor deposited TiNx films from tetrakis (dimethylamido) titanium precursor onto InP,” J. Appl. Phys. 71, 993-1000 (1992).
    22. A. Paranjpe, and M. IslamRaja, “Chemical vapor deposition TiN process for contact/via barrier applications,” J. Vac. Sci. Technol. B 13, 2105-2114 (1995).
    23. L. H. Dubois, B. R. Zegarski, and G. S. Girolami, “Infrared studies of the surface and gas phase reactions leading to the growth of titanium nitride thin films from tetrakis(dimethylamido)titanium and ammonia,” J. Electrochem. Soc. 139, 3603-3609 (1992).
    24. G. S. Sandhu, S. G. Meikle, and T. T. Doan, “Metalorganic chemical vapor deposition of TiN films for advanced metallization,” Appl. Phys. Lett. 62, 240-242 (1993).
    25. J. A. Prybyla, C. M. Chiang, and L. H. Dubois, “Investigations of the Growth of TiN Thin Films from Ti(NMe2)4 and Ammonia,” J. Electrochem. Soc. 140, 2695-2702 (1993).
    26. B. H. Weiller, and B. V. Partido, “Flow-tube kinetics of gas-phase chemical-vapor-deposition reactions TiN from Ti(NMe2)4 and NH3,” Chem. Mater. 6, 260-261 (1994).
    27. I. J. Raaijmakers, and J. Yang, “Low-temperature MOCVD of advanced barrier layers for the microelectronics industry,” Appl. Surf. Sci. 73, 31-41 (1993).
    28. T. S. Cale, M. B. Chaara, G. B. Raupp, and I. J. Raaijmakers, “Kinetics and conformality of TiN films from TDEAT and ammonia,” Thin Solid Films 236, 294-300 (1993).
    29. A. Intemann, H. Koerner, and F. Koch, “Film properties of CVD titanium nitride deposited with organometallic precursors at low pressure using inert gases, ammonia or remote activation,” J. Electrochem. Soc. 140, 3215-3221 (1993).
    30. A. Weber, R. Nikulski, C.-P. Klages, M. E. Gross, W. L. Brown, E. Dons, and R. M. Charatan, “Low temperature deposition of TiN using tetrakis(dimethylamido)-titanium in an electron cyclotron resonance plasma process,” J. Electrochem. Soc. 141, 849-852 (1994).
    31. A. Weber, R. Nikulski, and C.-P. Klages, “Deposition of TiN using tetrakis(dimethylamido)-titanium in an electron-cyclotron-resonance plasma process,” Appl. Phys. Lett. 63, 325-327 (1993).
    32. T. Akihori, A. Tanihara, and M. Tano, “Preparation of TiN films by electron-cyclotron resonance plasma chemical vapor-deposition,” Jpn. J. Appl. Phys. 30, 3558-3561 (1991).
    33. J. S. Kim, E. J. Lee, J. T. Baek, and W. J. Lee, “Effects of deposition parameters on composition, structure, resistivity and step coverage of TiN thin films deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition,” Thin Solid Films 305, 103-109 (1997).
    34. R. Kroger and M. Eizenberg, “Plasma induced microstructural, compositional, and resistivity changes in ultrathin chemical vapor deposited titanium nitride films,” J. App. Phys. 91, 5149-5154 (2002)
    35. S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhila, R. Madar, “TEM studies of the microstructure evolution in plasma treated CVD TiN thin films used as diffusion barriers,” Solid State Electronics 43, 1063-1068 (1999).
    36. J.Y. Yun and S.W. Rhee, “Remote plasma enhanced metalorganic chemical vapor deposition of TiN from tetrakis-dimethyl-amido- titanium,” J. Vac. Sci. Technol. A 18, 2822-2826 (2000).
    37. S. Riedel, S.E. Schulz, J. Baumann, M. Rennau, T. Gessner, “Influence of different treatment techniques on the barrier properties of MOCVD TiN against copper diffusion,” Microelectronic Engineering 55, 213-218 (2001).
    38. K.C. Park, S.H. Kim, and K.B. Kim, “Effect of ion bombardment during chemical vapor deposition of TiN films,” J. Electrochem. Soc. 147, 2711-2717 (2000).
    39. J.S. Jeng and J.S. Chen, “Thermal reactions of Cu/TiN/Ti/FSG and Cu/TiN/Ti/OSG multilayers at elevated temperatures,” J. Electrochem. Soc. 149, 562-566 (2002).
    40. W.L. Sung and B.S. Chiou, “Barrier layer effect of tantalum on the electromigration in sputtered copper films on hydrogen silsesguioxane and Si02 ,” J. Electronic Materials 31, 472-477 (2002).
    41. Z.C Wu., C.C Wang., R.G. Wu, Y.L. Liu, P.S. Chen, Z.M. Zhu, M.C. Chen, J.F. Chen, C.I. Chang, L.J. Chen, “Electrical reliability issues of integrating thin Ta and TaN barriers with Cu and low-k dielectric,” J. Electrochem. Soc. 146, 4290-4297 (1999).
    42. Y.X. Zeng, S.W. Russell, A.J. McKerrow, P.J. Chen, T.L. Alford, “ Thin film interaction between low-k dielectric hydrogen silsesquioxane (HSQ) and Ti barrier layer,” Thin Solid Films 360, 283-292 (2000).
    43. Y.X. Zeng, S.W. Russell, A.J. McKerrow, P.J. Chen, T.L. Alford , “Effectiveness of Ti, TiN, Ta, TaN, and W2N as barriers for the integration of low-k dielectric hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 18, 221-230 (2000).
    44. H. K. Shin, H. J. Shin, J. G. Lee, S. W. Kang, and B. T. Ahn, “MOCVD of titanium nitride from a new precursor, Ti[N(CH3)C2H5]4,” Chem. Mater. 9, 76-80 (1997).
    45. T. Hara, K. Sakata, A. Kawaguchi, S. Kamijima, “Control of agglomeration on copper seed layer employed in the copper interconnection,” Electrochemical and Solid State Letters 4, C81-C84 (2001).
    46. T. Hara and K. Sakata, “Stress in copper seed layer employing in the copper interconnection,” Electrochemical and Solid State Letters 4, G77-G79 (2001).
    Chapter 3
    1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (2000).
    2. J. Li, R. Blewer, and J. W. Mayer, “Copper-based metallization for ULSI applications,” MRS Bulletin 18, 18-21 (1993).
    3. S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suther, S. Redkar, and K. B. Kim, “Reactively sputtered TiN as a diffusion barrier between Cu and Si,” J. Appl. Phys. 68, 5176-5187 (1990).
    4. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon - failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433-5444 (1992).
    5. R. I. Hedge, P. J. Tobin, R. W. Fiordalice, and E. O. Travis, “Nucleation and growth of chemical vapor deposition TiN films on Si (100) as studied by total reflection x-ray fluorescence, atomic force microscopy, and Auger electron spectroscopy,” J. Vac. Sci. Technol. A 11, 1692-1695 (1993).
    6. M. Eizenberg, K. Littau, S. Ghanayem, M. Liao, R. Mosely, and A. K. Sinha, “Chemical vapor deposited TiCN: A new barrier metallization for submicron via and contact applications,” J. Vac. Sci. Technol. A 13, 590-595 (1995).
    7. J. D. McBrayer, R. M. Swanson and T. W. Sigmon, “Diffusion of Metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242-1246 (1986).
    8. Y. Shacham-Diamond, A. Dedhia, D. Hoffstetter and W. G. Oldham, “Copper transport in thermal SiO2,” J. Electrochem. Soc. 140, 2427-2432 (1993).
    9. N. J. Ianno, A. U. Amed, and D. E. Englebert, “Plasma-enhanced chemical vapor of TiN from TiCl4/N2/H2 gas mixtures,” J. Electrochem. Soc. 136, 276-280 (1989).
    10. P. Alen, M. Juppo, M. Ritala, T. Sajavaara, J. Keinonen and M.
    Leskela, “Atomic layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent,” J. Electrochem. Soc. 148, G566-G571 (2001).
    11. Y. T. Kim, C. S. Kwon, D. J. Kim, J. W. Park, and C. W. Lee,
    “Effects of nitrogen ion implantation on the thermal stability of tungsten thin films,” J. Vac. Sci. Technol. A 16, 477-481 (1998).
    12. I. J. Raajimakers, “Low-temperature metal-organic chemical-vapor-
    deposition of advanced barrier layer for the microelectronics industry,” Thin Solid Films 247, 85-93 (1994).
    13. S. C. Sun and M. H. Tsai, “Comparison of Chemical vapor
    deposition of TiN using tetrakis-diethylamino-titanium and tetrakis-dimethylamino-titanium,” Thin Solid Films 253, 440-444 (1994).
    14. J. Y. Yun, M. Y. Park, and S. W. Rhee, “Comparison of
    tetrakis(dimethylamido)titanium and tetrakis(diethylamido)titanium as precursors for metallorganic chemical vapor deposition of titanium nitride,” J. Electrochem. Soc. 146, 1804-1808 (1999).
    15. H. T. Chiu, and W. P. Chang, “Deposition of tantalum nitride
    thin-films from ethylimidotantalum complex,” J. Mater. Sci. Lett. 11, 96-98 (1992).
    16. G. C. Jun, S. L. Cho, and K. B. Kim, “Low temperature deposition of
    TaCN films using pentakis(diethylamido)tantalum,” Jpn. J. Appl. Phys. 37, L30-L32 (1998).
    17. S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin, and S. D. Kim,
    “Diffusion barrier properties of metallorganic chemical vapor deposited tantalum nitride films against Cu metallization,” J. Electrochem. Soc. 146, 3724-3730 (1999).
    18. M. H. Tsai, S. C. Sun, H. T. Chiu, C. E. Tsai, and S. H. Chuang,
    “Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido)tantalum for advanced metallization,” Appl. Phys. Lett. 67, 1128-1130 (1995).
    19. R. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical-vapor
    deposition of vanadium, niobium, and tantalum nitride thin-films,” Chem. Mater. 5, 614-619 (1993).
    20. R. G. Gordon, X. Liu, R. N. R. Broomhall-Dillard, and Y. Shi, “Highly conformal diffusion barriers of amorphous niobium nitride,” Mat. Res. Soc. Symp. Proc. 564, 335-340 (1999).
    21. C. W. Wu, W. C. Gau, J. C. Hu, T. C. Chang, C. H. Chen, C. J. Chu, and L. J. Chen, “Diffusion barrier properties of metallorganic chemical vapor deposited NbNxOyCz films for Cu metallization,” Surf. Coat Tech. 163, 214-219 (2003).
    22. Y. J. Mei, T. C. Chang, J. C. Hu, L. J. Chen, Y. L. Yang, F. M. Pan,
    W. F. Wu, A. Ting, and C. Y. Chang, “Characterization of TiN film grown by low-pressure chemical-vapor-deposition,” Thin Solid Films 308, 594-598 (1997).
    23. M. Azuma, Y. Nakato, and H. Tsubomura, “Oxygen and chlorine
    evolution on niobium-nitride, zirconium-nitride and other metal-nitride amorphous thin-film electrodes prepared by the reactive RF sputtering technique,” J. Electroanal. Chem. 255, 179-198 (1988).
    24. M. A. Farooq, S. P. Murarka, C. C. Chang, and F. A. Baiocchi,
    “Tantalum nitride as a diffusion barrier between Pd2Si or CoSi2 and aluminum,” J. Appl. Phys. 65, 3017-3022 (1989).
    25. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tsai, S. H. Chuang,
    and S. C. Wu, “Metal-organic chemical vapor deposition of tantalum nitride barrier layers for ULSI applications,” Thin Solid Films 270, 531-536 (1995).
    26. S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, and S. H. Min, “A
    comparative study of film properties of chemical vapor deposited TiN films as diffusion barriers for Cu metallization,” J. Electrochem. Soc. 146, 1455-1460 (1999).
    Chapter 4
    1. M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, and H. T. Chiu, “Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si,” J. Appl. Phys. 79, 6932-6938 (1996).
    2. A. E. Kaloyeros, X. Chen, T. Stark, and K. Kumar, “Tantalum nitride films grown by inorganic low temperature thermal chemical vapor deposition - Diffusion barrier properties in copper metallization,” J. Electrochem. Soc. 146, 170-176 (1999).
    3. Y. Okamoto, “Theoretical study of the initial gas-phase reactions of TaN CVD,” J. Crystal Growth 197, 236-243 (1999).
    4. J. Y. Yun and S. W. Rhee, S. Park, J. G. Lee, “Remote plasma enhanced metalorganic chemical vapor deposition of TiN from tetrakis-dimethyl-amido-titanium,” J. Vac. Sci. Technol. 18, 2822-2826 (2000).
    5. S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin, and S. D. Kim, “Diffusion barrier properties of metallorganic chemical vapor deposited tantalum nitride films against Cu metallization,” J. Electrochem. Soc. 146, 3724-3730 (1999).
    6. Y. J. Lee, B. S. Suh, M. S. Kwon, and C. O. Park, “Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection,” J. Appl. Phys. 85, 1927-1934 (1999).
    7. G. S. Chen, S. T. Chen, L. C. Yang, and P. Y. Lee, “Evaluation of single and multilayered amorphous tantalum nitride thin films as diffusion barriers in copper metallization,” J. Vac. Sci. Technol. A 18, 720-723 (2000).
    8. J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew, “Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization,” J. Vac. Sci. Technol. B 20, 1522-1526 (2002).
    9. K. P. Yap, H. Gong, and J. Y. Dai, T. Osipowicz, L. H. Chan, S. K. Lahiri, “Integrity of copper-tantalum nitride metallization under different ambient conditions,” J. Electrochem. Soc. 147, 2312-2318 (2000).
    10. Y. J. Lee, B. S. Suh, S. K. Rha, and C. O. Park, “Structural and chemical stability of Ta-Si-N thin film between Si and Cu,” Thin Solid Films 320, 141-146 (1998).
    11. J. S. Reid, R. Y. Liu, P. M. Smith, R. P. Ruiz, and M. A. Nicolet, “W-B-N diffusion barriers for Si/Cu metallizations,” Thin Solid Films 262, 218-223 (1995).
    12. C. U. Pinnow, M. Bicker, U. Geyer, and S. Schneider and G. Goerigk, “Decomposition and nanocrystallization in reactively sputtered amorphous Ta-Si-N thin films,” J. Appl. Phys. 90, 1986-1991 (2001).
    13. M. Bicker, C. U. Pinnow, U. Geyer, and S. Schneider, “Nanocrystallization of amorphous-Ta40Si14N46 diffusion barrier thin films,” Appl. Phys. Lett. 78, 3618-3620 (2001).
    14. M. A. Nicolet, “Diffusion barriers in the thin films,” Thin Solid Films 52, 415-443 (1978).
    15. H. Kattelus, M. A. Nicolet, “In diffusion phenomena in thin films and microelectronic materials,” edited by D. Gupta and P. S. Ho (Noyes, Park Ridge, NJ, 1988), pp.432-498
    16. S. Q. Wang, “Barrier against copper diffusion into silicon and drift through silicon dioxide,” MRS Bull. XIX(August), 30-40 (1994).
    17. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. technol. 11, 666-670 (1974).
    18. L. G. Harrison, “Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides,” Trans. Faraday Soc. 57, 1191-1199 (1961).
    19. K. C. Park, K. B. Kim, “Effect of annealing of titanium nitride on the diffusion barrier in Cu metallization,” J. Electrochem. Soc. 142, 3109-3115 (1995).
    20. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J. K. Kivilahti, “Reactive sputter deposition and properties of TaxN thin films,” Microelectro. Eng. 64, 289-297 (2002).
    21. S. H. Kim, S. J. Im, K. B. Kim, “The effect of ion beam bombardment on the properties of Ta(C)N films deposited from pentakis-diethyl- amido-tantalum,” Thin Solid Films 415, 177-186 (2002).
    22. C. C. Chang, J. S. Jeng, J. S. Chen, “Microstructural and electrical characteristics of reactively sputtered Ta-N thin films,” Thin Solid Films 413, 46-51 (2002).
    23. C. U. Pinnow, M. Bicker, U. Geyer, S. Schneider, G. Goerigk,
    “Decomposition and nano-crystallization in reactively sputtered amorphous Ta-Si-N thin films,” J. Appl. Phys. 90, 1986-1991 (2001).
    24. M. Bicker, C. U. Pinnow, U. Geyer, S. Schneider, M. Seibt, “Nano-crystallization of amorphous-Ta40Si14N46 diffusion barrier thin films,” Appl. Phys. Lett. 78, 3618-3620 (2001).
    25. K. Holloway, P. M. Fryer, C. Carbral, Je., J. M. E. Harper, P. J. Bailery and K. H. Kelleher, ”Tantalum as a diffusion barrier between copper and silicon failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433-5444 (1992).
    26. M. Stavrev, C. Wenzel, A. Moller, K. Drescher, “Sputtering of tantalum-base diffusion barrier in Si/Cu metallization – effects of gas- pressure and composition,” Appl. Surf. Sci. 91, 257-262 (1995).
    27. M. Stavrev , D. Fischer, A. Preuss , C. Wenzel, N Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization,” Microelectron. Eng. 33, 269-275 (1997).
    28. K. L. Ou, W. F. Wu, C. P. Chou, S. Y. Chiou, C. C. Wu, “Improved TaN barrier layer against Cu diffusion by formation of an amorphous layer using plasma treatment,” J. Vac. Sci. Technol. B 20, 2154-2161 (2002).
    29. M. Hecker, D. Fischer, V. Hoffmann, H. J. Engelmann, A. Voss, N. Mattern, C. Wenzel, C. Vogt, E. Zschech, “Influence of N content on microstructure and thermal stability of Ta-N thin films for Cu interconnection,” Thin Solid Films 414, 184-191 (2002).
    30. K. M. Latt, Y. K. Lee, H. L. Seng, T. Osipowicz, “Diffusion barrier properties of ionized metal plasma deposited tantalum nitride thin films between copper and silicon dioxide,” J. Mater. Sci. 36, 5845-5851 (2001).
    31. H. L. Park, K. M. Byun, W. J. Lee, “Transformer coupled plasma enhanced metal organic chemical vapor deposition of Ta(Si)N thin films and their Cu diffusion barrier properties,” Jpn. J. Appl. Phys. 41, 6153-6164 (2002).
    32. H. Kim, A. J. Kellock , S. M. Rossnagel, “Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition,” J. Appl. Phys. 92, 7080-7085 (2002).
    33. J. G. Ekerdt, E. R. Engbrecht, Y. M. Sun, S. Smith, K. Pfiefer, J. Bennett, J. M. White, “Chemical vapor deposition growth and properties of TaCxNy,” Thin Solid Films 418, 145-150 (2002).
    34. S. H. Kim, S. J. Im, K. B. Kim, “The effect of ion beam bombardment on the properties of Ta(C)N films deposited from pentakis- diethyl- amido-tantalum,” Thin Solid Films 415, 177-186 (2002).
    35. S. Joseph, M. Eizenberg, C. Marcadal, L. Chen, “TiSiN films produced by chemical vapor deposition as diffusion barriers for Cu metallization,” J. Vac. Sci. Technol. B 20, 1471-1475 (2002).
    36. R. G. Gordon, X. Liu, R. N. R. Broomhall-Dillard and Y. Shi, “Highly conformal diffusion barriers of amorphous niobium nitride,” Mater. Res. Soc. Symp. Proc. 564, 335-340 (1999).
    37. R. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical vapor deposition of vanadium, niobium and tantalum nitride thin films,” Chem. Mater. 5, 614-619 (1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE