研究生: |
徐宗行 Tsung-Hsing Hsu |
---|---|
論文名稱: |
在超級疏水的仿生荷葉表面上實現可回復性電濕潤之研究 Reversible Electrowetting on Super-hydrophobic Lotus Leaf Mimetic Surface |
指導教授: |
曾繁根
Fan-Gang Tseng 錢景常 Ching-Chang Chieng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 電濕潤 、超疏水 |
外文關鍵詞: | electrowetting, super-hydrophobic |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中已在超疏水的仿生荷葉表面上達成可回復式之電濕潤,超疏水結構中的微米結構是由厚膜光阻AZ-9260所構成的,而其中奈米結構是由覆蓋在微米表面的parylene以反應式離子蝕刻過後所形成的,這兩種結構所形成的複合結構表面對於去離子水的接觸角及遲滯角大約為160度及3度,然而當只有奈米或微米結構時,其遲滯角將變得非常大,此時的表面並沒有辦法應用於可回復式之電濕潤
開放式之電濕潤晶片將比傳統之電濕潤晶片在設計及檢測上多了更多的彈性,本研究的開始式電濕潤晶片可以在38V下成功的驅動7ul的液珠
在本研究中,以奈米及微米結構所形成的複合結構取代EWOD晶片上的疏水層,以達成可回復式之電濕潤,因為此複合結構表面有三個不同的能階,所以當施加特定電壓時,該表面還是可以維持低遲滯的狀況,所以可以在該表面達成可回復式之電濕潤,在驅動晶片部分,此EWOD晶片的表面特性最多可承受160V的直流電,而還是維持低遲滯的特性,而接觸角最多可改變大約14度左右,不過,一但電壓超過160V,將造成該表面之永久性的傷害
Reversible electrowetting on super-hydrophobic lotus leaf mimetic surface has been demonstrated in this research.
Well-designed patterned thick photo resist AZ-9260 is for micro structures. Therefore, a thin parylene film is deposited and etched to form nano structures on micro structures. The hydrophobicity and hysteresis of the binary structures are about 160° and 3° by contact angle. However, if there are only micro or nano structures, the hysteresis of the hydrophobic surface will increase tremendously.
By removing the cover electrode from traditional EWOD, the chip has more flexibility on designing and sensing. This EWOD chip successfully demonstrates the droplet (about 7 μl) movement by applying a voltage 38 V.
In this research, the super-hydrophobic lotus leaf mimetic structures are substituted for Teflon on EWOD chip. The structures have three energy barriers, so the surface can keep small hysteresis and water contact angle is reversible after applying a specific voltage. The maximum contact angle difference is about 14° with a voltage 160 V. However, the reversibility of the surface will be failed if a voltage over 160 V is applied.
1. A. A. Darhuber and S. M. Troian, “Principles of Microfluidic Actuation by Modulation of Surface Stresses”, Annual Review of Fluid Mechanics, January 2005, Vol. 37, pp. 425-455.
2. A. Klingner and F. Mugele, “Electrowetting-induced Morphological Transitions of Fluid Microstructures”, Journal of Applied Physics, March 2004, Vol. 95, Issue 5, pp. 2918-2920.
3. G. Lippmann, “Relations entre les phénomènes electriques et capillaires,” Annales de Chimie et de Physique, 1875, Vol. 5, No. 11, pp. 494-549.
4. B. Berge, “Electrocapillarite et mouillage de films isolants par l’eau”, Comptes Rendus Des Séances De L'Académie Des Sciences, June 1993, Vol. 317, No. 2, pp. 157-163.
5. U. C. Yi and C. J. Kim, “Soft Printing of Droplets Pre-metered by Electrowetting”, Sensors and Actuators A, 2004, Vol. 114, pp. 347-354.
6. M. S. Dhindsa, N. R. Smith, J. Heikenfeld, P. D. Rack, J. D. Fowlkes, M. J. Doltycz, A. V. Melechko, and M. L. Simpson, ”Electrowetting on Arrayed Carbon Nanofibers”, IEEE-NANO 2006, Vol. 1, pp. 207-210.
7. N. A. Patankar, “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars”, Langmuir 2004, Vol. 20, pp. 8209-8213.
8. M. Washizu, “Electrostatic Actuation of Liquid Droplets for Microreactor Applications”, IEEE Transactions on Industry Applications, July / August 1998, Vol. 34, No. 4.
9. O. D.Velev, B. G. Prevo, K. H. Bhatt, “On-chip Manipulation of Free Droplets”, Nature, December 2003, Vol. 426, pp. 515-516.
10. H. Matsumoto and J. E. Colgate, “Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension”, IEEE Micro Electro Mechanical Systems, February 1990, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 105-110, Napa Valley, CA, USA.
11. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, “Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling”, Sensors and Actuators A, 2002, vol. 95, pp. 259-268.
12. S. K. Cho, S. K. Fan, H. Moon, C. J. Kim, “Towards Digital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation”, IEEE Micro Electro Mechanical Systems, January 2002, The Fifteenth IEEE International Conference, pp. 32-35, Las Vegas, NV, USA.
13. U. C. Yi and C. J. Kim, “EWOD Actuation with Electrode-Free Cover Plate”, IEEE Solid-State Sensors, Actuators and Microsystems, 2005, Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference, Vol. 1, pp. 89-92.
14. T. N. Krupenkin, J. A. Taylor, T. M. Schneider, and S. Yang, “From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces”, Langmuir 2004, Vol. 20, pp. 3824-3827.
15. M. S. Dhindsa, N. R. Smith, J. Heikenfeld, P. D. Rack, J. D. Fowlkes, M. J. Doltycz, A. V. Melechko, and M. L. Simpson, ”Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers”, Langmuir 2006, Vol. 22, pp. 9030-9034.
16. Q. Xie, J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, C. C Han, “Facile Creation of A Super-Amphiphobic Coating Surface with Bionic Microstructure”, Advanced Materials, 2004, Vol. 16, Issue 4, pp. 302 - 305.
17. M. H. Chen, T. H. Hsu, Y. J. Chuang, P. H. Chen, and F. G. Tseng, “The Preparation of Self-formed PDMS Nanostructures by RIE Etching”, IEEE NEMS 2007, pp. 977-980.
18. W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta 1997, Vol. 202, pp. 1-8.