研究生: |
周子喻 Chou, Tsu-Yu |
---|---|
論文名稱: |
熱活化延遲螢光與聚集誘導放光有機發光元件光物理特性之研究 Photophysical Properties of Thermally Activated Delay Fluorescence and Aggregation Induced Emission Organic Light Emitted Devices |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
呂宥蓉
Lu, Yu-Jung 林子超 Lin, Tzu-Chau 周鶴修 Chou, Ho-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 熱活化延遲螢光 、聚集誘導放光 、三重態-三重態淬熄 、有機發光二極體元件 |
外文關鍵詞: | TADF, AIE, TTA, OLED |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題以熱活化延遲螢光的光物理特性分析和聚集誘導放光元件的製備為主,同時,我們針對光物理量測:變角度光致發光量測原理和瞬態電激發光延遲量測做深入的討論。
首先,在本論文的序論中,我們簡述有機發光二極體的在顯示器以及照明上的應用。
在論文的第二部分,我們介紹有機發光二極體的發展歷史以及發光原理,對元件的製程方式、量測原理做一套有系統的介紹。
論文的第三部分,我們量測真空蒸鍍所製備的熱活化延遲螢光(thermally activated delay fluorescence, TADF)薄膜光物理特性,元件在高水平偶極矩的特性下有相當高的外部量子效率。在此章節後半段,我們初步檢測以旋轉塗佈製備出的薄膜是否具備TADF特性。
論文的第四部分,我們將介紹聚集誘導放光機制並簡述其歷史,簡介如何架設從紫外光量至紅外光的光譜儀系統,並製備Pt錯合物及其衍生物的薄膜和元件,透過調變發光層厚度、阻擋層mCP厚度以及發光層的比例,藉此來優化近紅外光聚集誘導放光元件。
論文的第五部分,我們將介紹三重態-三重態放光 (triplet-triplet annihilation , TTA)OLED機制,使用自行架設的瞬態電激發光延遲量測來解釋螢光元件擁有高效率的原因。
In this thesis, we focus on the photophysical properties of thermally activated delay fluorescence (TADF) and the preparation of aggregation induced emission devices. We also put much emphasis on the variable angle PL intensity measurement and transient EL measurement.
In the first part of this thesis, we briefly review the current status of solid-state lightings and displays.
In the second part, we introduce the brief history of organic light emitting diodes (OLEDs) and their working mechanism. Then, we discuss the manufacturing methods of OLEDs and their performance measurement methodology.
In the third part, we measure the photophysical properties of vacuum deposited TADF films and OLEDs. The devices show increased out-coupling efficiency due to the highly horizontally oriented emission dipoles. In the end of this chapter, we preliminarily investigate the TADF characteristics of some spin-coated organic thin films.
In the fourth part, we first introduce the emission mechanism and the brief history of aggregation induced emission (AIE) molecule. We demonstrate the spectrometer setup for the luminance measurement which cover the wavelength range from ultraviolet to infrared. We fabricate the films and devices containing Pt emissive complexes. We optimize the near infrared AIE devices through tuning the thicknesses of the emissive layers, the thicknesses of the blocking layers, and the emission layer compositions.
In the fifth part, we study the transient electroluminescence behaviors of OLEDs with triplet-triplet annihilation characteristics.
[1] http://ykuo.ncue.edu.tw/oled/oled_ad.htm.
[2] http://beaver.ncnu.edu.tw/projects/emag/article/201002/%E9%A1%AF%E7%A4%BA%E5%99%A8%E4%B9%8B%E9%81%8E%E5%8E%BB%E3%80%81%E7%8F%BE%E5%9C%A8%E8%88%87%E6%9C%AA%E4%BE%86.pdf.
[3] http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=12876.
[4] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042.
[5] C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
[6] C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics 1989, 65, 3610.
[7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[8] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[9] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[10] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nature Communications 2014, 5, 4016.
[11] http://www.newhavendisplay.com/oled_page.html.
[12] https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html.
[13] http://www.pooher.com/xinwen/Technical/2013-05-08/404.html.
[14] http://slideplayer.com/slide/9518979/.
[15] C. Adachi, SPIE Newsroom 2015.
[16] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Advanced materials 2014, 26, 3844.
[17] C. Ganzorig, M. Fujihira, Applied Physics Letters 2002, 81, 3137.
[18] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Advanced Functional Materials 2012, 22, 2797.
[19] Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nature Reviews Materials 2018, 3, 18020.
[20] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Advanced materials 2014, 26, 7931.
[21] C. A. Parker, C. G. Hatchard, Transactions of the Faraday Society 1961, 57, 1894.
[22] G. Blasse, D. R. McMillin, Chemical Physics Letters 1980, 70, 1.
[23] M. N. Berberan-Santos, J. M. M. Garcia, Journal of the American Chemical Society 1996, 118, 9391.
[24] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Advanced materials 2009, 21, 4802.
[25] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nature Photonics 2018, 12, 235.
[26] T. Lampe, T. D. Schmidt, M. J. Jurow, P. I. Djurovich, M. E. Thompson, W. Brütting, Chemistry of Materials 2016, 28, 712.
[27] S. Hyun, L. Sunghun, K. Kwon‐Hyeon, M. Chang‐Ki, Y. Seung‐Jun, L. Jeong‐Hwan, K. Jang‐Joo, Advanced materials 2014, 26, 4730.
[28] L. Zhao, T. Komino, M. Inoue, J. H. Kim, J. C. Ribierre, C. Adachi, Applied Physics Letters 2015, 106, 063301.
[29] T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, W. Brütting, Applied Physics Letters 2011, 99, 163302.
[30] M. Taneda, T. Yasuda, C. Adachi, Applied Physics Express 2011, 4, 071602.
[31] http://www.lumlight.cn/material.php?sn=12.
[32] http://arocorp.com/resources/extinction-ratio/.
[33] https://www.ansforce.com/post/S1-p360.
[34] https://www.slideshare.net/TKCheng2/50-61136281.
[35] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Applied Physics Letters 2009, 95, 243303.
[36] J. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting, Applied Physics Letters 2010, 96, 073302.
[37] K. H. Kim, J. L. Liao, S. W. Lee, B. Sim, C. K. Moon, G. H. Lee, H. J. Kim, Y. Chi, J. J. Kim, Advanced materials 2016, 28, 2526.
[38] J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Advanced materials 2014, 26, 5429.
[39] R. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angewandte Chemie 2016, 55, 7171.
[40] J. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, Journal of the American Chemical Society 1982, 104, 630.
[41] J. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby, A. Köhler, R. H. Friend, Journal of the American Chemical Society 2001, 123, 9412.
[42] W. Siebrand, The Journal of Chemical Physics 1967, 46, 440.
[43] Q. Li, Z. Li, Advanced science 2017, 4, 1600484.
[44] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chemical Communications 2001, 1740.
[45] Z. Zhao, B. He, B. Z. Tang, Chemical science 2015, 6, 5347.
[46] Z. Zhao, J. W. Y. Lam, B. Z. Tang, Journal of Materials Chemistry 2012, 22, 23726.
[47] S.-Y. Kim, Y.-J. Cho, G. F. Jin, W.-S. Han, H.-J. Son, D. W. Cho, S. O. Kang, Physical Chemistry Chemical Physics 2015, 17, 15679.
[48] K. Kokado, Y. Chujo, The Journal of Organic Chemistry 2011, 76, 316.
[49] M. Tominaga, Y. Morisaki, Y. Chujo, Macromolecular rapid communications 2013, 34, 1357.
[50] L. Weber, J. Halama, L. Böhling, A. Brockhinke, A. Chrostowska, C. Darrigan, A. Dargelos, H.-G. Stammler, B. Neumann, European Journal of Inorganic Chemistry 2013, 2013, 4268.
[51] M. Cocchi, J. Kalinowski, D. Virgili, J. A. G. Williams, Applied Physics Letters 2008, 92, 113302.
[52] J. R. Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds, K. S. Schanze, Chemistry of Materials 2011, 23, 5296.
[53] X. Du, J. Qi, Z. Zhang, D. Ma, Z. Y. Wang, Chemistry of Materials 2012, 24, 2178.
[54] S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angewandte Chemie 2015, 54, 13068.
[55] L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angewandte Chemie 2014, 53, 2119.
[56] d. M. J. C., W. H. Felix, F. R. H., Advanced materials 1997, 9, 230.
[57] https://www.photonicsolutions.co.uk/product-detail.php?prod=5923.
[58] https://en.wikipedia.org/wiki/Pyrrole.
[59] https://zh.wikipedia.org/wiki/%E5%90%A1%E5%95%B6.
[60] https://en.wikipedia.org/wiki/Pyrimidine.
[61] K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nature Photonics 2016, 11, 63.
[62] J. Kido, Y. Iizumi, Applied Physics Letters 1998, 73, 2721.
[63] S. Sinha, A. P. Monkman, Applied Physics Letters 2003, 82, 4651.
[64] Z. D. Popovic, H. Aziz, Journal of Applied Physics 2005, 98, 013510.
[65] D. Y. Kondakov, Journal of the Society for Information Display 2009, 17, 137.
[66] D. Y. Kondakov, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373.