簡易檢索 / 詳目顯示

研究生: 楊季蓁
Yang, Chi-Chen
論文名稱: 於動態流量下可最大化網絡服務部署利潤的虛擬網絡功能混合配置策略
A Hybrid Virtual Network Function Placement Strategy for Maximizing the Profit of Network Service Deployment over Time-Varying Workloads
指導教授: 周志遠
Chou, Jerry
口試委員: 楊舜仁
YANG, SHUN-REN
賴冠州
Lai, Kuan-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 45
中文關鍵詞: 虛擬網絡功能服務功能鏈時變工作量優化
外文關鍵詞: VirtualNetworkFunction, ServiceFunctionChainRequest, Time-VaryingWorkload, Optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網絡功能虛擬化(NFV)的出現徹底改變了網絡體系結構的基礎架構和服務管理。通過虛擬網絡功能(VNF),網絡運營商不僅可以降低其資本支出(CAPEX)和運營支出(OPEX),而且還可以縮短網絡服務部署的時間,也增加部署的彈性。然而,網絡功能虛擬化的主要挑戰之一是虛擬網絡功能放置問題,因放置問題會影響部署成本和服務質量。虛擬網絡功能放置問題是一個眾所周知的NP完全問題,在過去的研究中,許多的學者將放置問題表示為整數線性規劃(ILP)問題,並使用整數線性規劃求解器找到最佳放置位置。由於解整數線性規劃的問題十分耗時,因此在問題的規模較大時和動態工作負載情況下使用整數線性規劃求解器是不可行的。所以,許多學者也提出各種貪婪算法以尋找近似解。然而,這兩種方法都無法針對動態的流量快速地做出準確的放置決策。因此,在此論文中,我們提出了一種混合方法,該方法使用更少的時間來最大化網絡服務部署的總體利潤。由實驗結果表明,與貪婪算法相比,我們的混合方法可取得高達36%利潤的提升,與整數線性規劃解器相比,可提高30倍的速度。


    The emergence of network function virtualization~(NFV) has revolutionized the infrastructure and service management of network architecture. Through virtual network function~(VNF), network operators not only can reduce their cost on Capital expenditures~(CAPEX), operating expenses~(OPEX), and power consumption, but also improve the time and flexibility of network service deployment. However, one of the key challenges of NFV is the VNF placement problem, which can affect both deployment cost and service quality. VNF placement is a well-known NP-complete problem; hence many previous studies formulate the problem as an Integer Linear Programming~(ILP) Problem and find the best placement using an ILP solver. Since solving ILP is time-consuming, using an ILP solver is infeasible for large scaled and dynamic workloads in real-time. As a result, various greedy algorithms have also been proposed to find approximate solutions. However, neither of these approaches can make quick and accurate placement decisions for dynamic traffic workload. Therefore, we propose a hybrid method that uses less time to maximize the overall profit of network service deployment. Our evaluations based on real backbone network traffic and topology show that our hybrid approach can achieve up to 36\% profit improvement compared to a pure greedy approach, while achieving x30 times computation time speedup over a pure ILP approach.

    1 Introduction......................1 2 VNF Placement Problem.............4 2.1 Problem Definition................4 2.2 Optimization Objective............7 3 Hybrid VNF Placement Methods.....13 3.1 Approach Overview................13 3.2 ILP Formulation..................16 3.3 Greedy Placement Algorithm.......18 3.4 Reconfiguration Algorithms.......20 3.5 Complexity Analysis..............23 3.6 Limitation Discussion............26 4 Experiment Setup.................27 4.1 Network Topology.................27 4.2 SFCR Workload....................28 4.3 Compared Methods.................29 5 Experiment Results...............31 5.1 ILP Solution Analysis............31 5.2 Small-scale Network Evaluation...35 5.3 Large-scale Network Evaluation...38 6 Related Work.....................40 7 Conclusion.......................42 References.......................43

    [1] Alleg, A., Kouah, R., Moussaoui, S., and Ahmed, T. Virtual network functions
    placement and chaining for real­time applications. In 2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication
    Links and Networks (CAMAD) (2017), pp. 1–6.
    [2] Asgari, S., Jamali, S., Fotohi, R., and Nooshyar, M. Performance­aware placement and chaining scheme for virtualized network functions: a particle swarm
    optimization approach. The Journal of Supercomputing (04 2021).
    [3] Bari, M. F., Chowdhury, S. R., Ahmed, R., and Boutaba, R. On orchestrating
    virtual network functions. In 2015 11th International Conference on Network
    and Service Management (CNSM) (2015), pp. 50–56.
    [4] Carpio, F., Jukan, A., and Pries, R. Balancing the migration of virtual network
    functions with replications in data centers. 1–8.
    [5] Cho, D., Taheri, J., Zomaya, A. Y., and Bouvry, P. Real­time virtual network
    function (vnf) migration toward low network latency in cloud environments.
    In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD)
    (2017), pp. 798–801.
    [6] Cohen, R., Lewin­Eytan, L., Naor, J. S., and Raz, D. Near optimal placement
    of virtual network functions. In 2015 IEEE Conference on Computer Communications (INFOCOM) (2015), pp. 1346–1354.
    [7] Cplex, I. I. V12. 1: User’s manual for cplex. International Business Machines
    Corporation 46, 53 (2009), 157.
    [8] Eramo, V., Ammar, M., and Lavacca, F. G. Migration energy aware reconfigurations of virtual network function instances in nfv architectures. IEEE
    Access 5 (2017), 4927–4938.
    [9] et al, M. C. Network functions virtualization. [Online]. Available:
    https://portal.etsi.org/nfv/nfv_white_paper.pdf.
    [10] Farshin, A., and Sharifian, S. A modified knowledge­based ant colony algorithm for virtual machine placement and simultaneous routing of nfv in distributed cloud architecture. The Journal of Supercomputing 75 (08 2019).
    [11] Gember­Jacobson, A., and Akella, A. Improving the safety, scalability, and
    efficiency of network function state transfers. pp. 43–48.
    [12] Gupta, A., Farhan Habib, M., Mandal, U., Chowdhury, P., Tornatore, M., and
    Mukherjee, B. On service­chaining strategies using virtual network functions
    in operator networks. Computer Networks 133 (2018), 1–16.
    [13] Gupta, A., Habib, M. F., Chowdhury, P., Tornatore, M., and Mukherjee, B.
    Joint virtual network function placement and routing of traffic in operator networks.
    [14] Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. Network function virtualization: Challenges and opportunities for innovations. IEEE Communications
    Magazine 53, 2 (2015), 90–97.
    [15] Houidi, O., Soualah, O., Louati, W., Mechtri, M., Zeghlache, D., and Kamoun,
    F. An efficient algorithm for virtual network function scaling. In GLOBECOM
    2017 ­ 2017 IEEE Global Communications Conference (2017), pp. 1–7.
    [16] Isyaku, B., Mohd Zahid, M. S., Bte Kamat, M., Abu Bakar, K., and Ghaleb,
    F. A. Software defined networking flow table management of openflow
    switches performance and security challenges: A survey. Future Internet 12,
    9 (2020).
    [17] Lee, Y.­C., and Zomaya, A. Energy efficient utilization of resources in cloud
    computing systems. The Journal of Supercomputing 60 (05 2010), 268–280.
    [18] Li, D., Hong, P., Xue, K., and j. Pei. Virtual network function placement
    considering resource optimization and sfc requests in cloud datacenter. IEEE
    Transactions on Parallel and Distributed Systems 29, 7 (2018), 1664–1677.
    [19] Manias, D., Jammal, M., Hawilo, H., Shami, A., Heidari, P., Larabi, A., and
    Brunner, R. Machine learning for performance­aware virtual network function
    placement. pp. 1–6.
    [20] Mehraghdam, S., Keller, M., and Karl, H. Specifying and placing chains of virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
    Networking (CloudNet) (2014), pp. 7–13.
    [21] Meng, Z., Bi, J., Sun, C., Xu, A., and Hu, H. Pram: Priority­aware flow
    migration scheme in nfv networks. SOSR ’17, Association for Computing
    Machinery, p. 183–184.
    [22] Moens, H., and Turck, F. D. Vnf­p: A model for efficient placement of virtualized network functions. In 10th International Conference on Network and
    Service Management (CNSM) and Workshop (2014), pp. 418–423.
    [23] Orlowski, S., Pióro, M., Tomaszewski, A., and Wessäly, R. SNDlib 1.0–
    Survivable Network Design Library. In Proceedings of the 3rd International
    Network Optimization Conference (INOC 2007), Spa, Belgium (April 2007).
    http://sndlib.zib.de, extended version accepted in Networks, 2009.
    [24] Orlowski, S., Pióro, M., Tomaszewski, A., and Wessäly, R. SNDlib 1.0–
    Survivable Network Design Library. Networks 55, 3 (2010), 276–286.
    [25] Pei, J., Hong, P., Pan, M., Liu, J., and Zhou, J. Optimal vnf placement via
    deep reinforcement learning in sdn/nfv­enabled networks. IEEE Journal on
    Selected Areas in Communications 38, 2 (2020), 263–278.
    [26] Quinn, P., and Nadeau, T. Problem statement for service function chaining
    (rfc7498). [Online]. Available: https://rfc­editor.org/rfc/rfc7498.txt.
    [27] Racheg, W., Ghrada, N., and Zhani, M. F. Profit­driven resource provisioning in nfv­based environments. In 2017 IEEE International Conference on
    Communications (ICC) (2017), pp. 1–7.
    [28] Ruiz, L., Barroso, R. J. D., De Miguel, I., Merayo, N., Aguado, J. C.,
    De La Rosa, R., Fernández, P., Lorenzo, R. M., and Abril, E. J. Genetic algorithm for holistic vnf­mapping and virtual topology design. IEEE Access 8
    (2020), 55893–55904.
    [29] Strom, D., and van der Zwet, J. F. ”truth and lies about latency in the cloud,”
    interxiontm white paper.
    [30] Sun, P., Lan, J., Li, J., Guo, Z., and Hu, Y. Combining deep reinforcement
    learning with graph neural networks for optimal vnf placement. IEEE Communications Letters 25, 1 (2021), 176–180.
    [31] Sun, Q., Lu, P., Lu, W., and Zhu, Z. Forecast­assisted nfv service chain deployment based on affiliation­aware vnf placement. In 2016 IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.
    [32] Tang, L., He, X., Zhao, P., Zhao, G., Zhou, Y., and Chen, Q. Virtual network
    function migration based on dynamic resource requirements prediction. IEEE
    Access 7 (2019), 112348–112362.
    [33] Varasteh, A., De Andrade, M., Machuca, C. M., Wosinska, L., and Kellerer, W.
    Power­aware virtual network function placement and routing using an abstraction technique. In 2018 IEEE Global Communications Conference (GLOBECOM) (2018), pp. 1–7.
    [34] Wang, Y., Xie, G., Li, Z., He, P., and Salamatian, K. Transparent flow migration for nfv. In 2016 IEEE 24th International Conference on Network Protocols (ICNP) (2016), pp. 1–10.

    QR CODE