研究生: |
羅虎 RahulKumar Singh |
---|---|
論文名稱: |
金及銀金屬催化之新合成高度官能化之碳環與雜環有機分子之途徑 Gold & Silver-Catalyzed New Synthetic Methods to Access Highly Functionalized Carbocyclic and Heterocyclic Organic Molecules |
指導教授: |
劉瑞雄
Liu,Rai-Shung |
口試委員: |
彭之皓
Peng, Chi-How 莊士卿 Chuang, Shih-Ching 陳銘洲 Chen, Ming-Chou 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 603 |
中文關鍵詞: | 金催化 、銀催化 、碳環 、雜環 |
外文關鍵詞: | Gold-Catalyzed, Silver-catalyzed, Carbocyclo, Heterocyclo |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹了金及銀金屬催化之新合成方法製成高度官能之碳環和雜環有機分子。其中包括使用金和銀金屬將各種方便取得的基質高效轉化為廣泛、多功能的碳環和雜環產物。為了方便理解,本文被分為四個章節。
第一章描述了以金催化使硝基芳烴及丙炔酸衍生物進行1,2-胺基硝基化產生α-亞胺腈;這種新的反應適用於不同的丙炔衍生物和硝基芳烴來產生各種實用的1,2-氧化官能基化的炔類,而此結構設計可以應用於農業用藥之中。
第二章論述金金屬催化行亞胺化/曼尼希反應,經由連續反應使容易取得的3-烯-1-炔醯胺透過一鍋化高位向選擇性反應轉變為1,5-亞胺基化合物。該反應與多元化的3-烯-1-炔醯胺、醛和苯胺都可進行,且具有優良的非對映選擇性及產率。我們的對照實驗指出3-烯-1-炔醯胺之金催化胺化,得到α亞氨基烯丙基金中間體,隨後再與亞胺離子反應,進行立體選擇性的曼尼希反應。若以那些無環烯烴3-烯-1-炔醯胺進行反應則反應無選擇性,而若使用環烯烴類則具有順式選擇性。一個開放的過渡狀態使我們能夠合理的推測這些觀測到的立體選擇性是經由一個antiperiplanar構象所產生。
第三章描述了經由兩個不同的途徑利用金金屬催化炔醯胺、丙二烯酰胺以及α-芳香基重氮腈進行[3 + 2]環化得到1-胺基-1H-茚;這些環化的成功歸功於α氰基芳基卡賓用來激活離子通道的高親電性。茚分子是極為需要的天然產物,所得之1-氨基-1H-茚可以被用於生物活性分子的合成。
第四章介紹了新穎的金金屬催化吲哚及α-芳腈重氮進行分子間卡賓官能基化: 通過雙親核加成反應可以合成雙吲哚基-2-苯基乙腈。本反應顯示各種範圍的官能基容忍度及相對應的產率,這可以應用在許多吲哚生物鹼如砷啉A和砷啉B,抑制劑,吲哚-3-甲醇和Streptindole的核心結構上,這些是在許多治療疾病非常有用的分子。
This dissertation describes Gold & Silver-Catalyzed New Synthetic Methods to Access Highly Functionalized Carbocyclic and Heterocyclic Organic Molecules. It includes gold and silver metal which promotes efficient transformations of a variety of readily available substrates to wide range of synthetically useful carbocyclic and heterocyclic products. For better understanding, this thesis has been divided into four chapters
The first chapter describes the Gold-Catalysed 1,2-iminonitronation of propiolate derivatives with nitrosoarenes to give α-imidoyl nitrones; This new reactions are applicable to diverse propiolate derivatives and nitrosoarenes to implement 1,2-oxidative functionalization of alkynes which finds various application in Agrochemicals.
The second chapter deals with the Gold-Catalysed imination/Mannich reaction cascades on readily available 3-en-1-ynamides enable the diastereoselective synthesis of 1,5-iminoamino compounds in one-pot operation. The reactions work well with diversified 3-en-1-ynamides, aldehydes and anilines with good to excellent diastereoselectivities. Our control experiments indicate gold-catalyzed aminations of 3-en-1-ynamides to yield -imino allylgold intermediates that react subsequently with iminiums to implement the Mannich reactions stereoselectively. The reactions proceed with anti-selectvity for those 3-en-1-ynamides bearing acyclic alkenes whereas syn-selectivity is for their cycloalkene-based analogues. An open-transition state can satisfactorily rationalize these observed stereoselectivities based on an antiperiplanar conformation.
The third chapter describes Gold-catalyzed [3+2]-annulations of α-aryl diazonitriles with ynamides and allenamides yield 1-amino-1H-indenes in two distinct pathways; the success of these annulations relies on the high electrophilicity of α-cyano arylgold carbenes to activate an ionic pathway. Indene molecule is highly desirable moiety in natural product and the resulting 1-amino-1H-Indenes can be used for the synthesis of bioactive molecules.
The fourth chapter show development of novel Gold-Catalyzed intermolecular carbenoid functionalization of indoles with α-aryl diazo nitrile: Synthesis of bis(indolyl)-2-phenylacetonitrile via Double nucleophilic Addition Reaction. Reactions shows variety of scopes and yield a BIMs derivatives which is the core structures in many indole alkaloids such as Arsindoline A and B, Arundine, Viberindole A and Streptindole, these are very useful molecule in the treatment of many deseases.
3 References:
1. a) Comprehensive reviews on -diazocarbonyl compounds, see: Ye, T.;
McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew.
Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev.
1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle
M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet.
Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A.
Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev.
2003, 103, 2861.
2. a) Doyle, M.P.; Duffy, R.; Ratnikov, M. Chem. Rev. 2010,110, 704. b) Gil
-lingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. c) Sun, X.L.; tang, Y. Acc.
Chem. Res. 2008, 41, 937. d) Rh (I)-catalyzed sequential C(sp)–C(sp3) and
C(sp3)–C(sp3) bond formation through migratory carbene insertion, Xia, Y.;
369
Feng, S.; Liu. Z. Angew. Chem. Int. Ed. 2015, 54, 7891. e) Ford, A.; Miel, H.;
Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem.
Rev. 2015, 115, 9981.
3. a) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. b) Morton, D.;
Davies, H. M. L. Chem. Soc. Rev. 2011, 40, 1857. c) Doyle, M. P.; Duffy, R.;
Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
4. a)Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. b)
Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q-L. J. Am. Chem.
Soc. 2007, 129, 5834. c) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J.
Am. Chem. Soc. 2010, 132, 16374.
5. Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
6. Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Fructos,
M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.;
Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284.
7. Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem.
Int. Ed. 2010, 49, 2840.
8. For recent reviews on the chemistry of ynamides, see: a) DeKorver, K. A.; Li, H.;
Lohse, A. G. Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110,
5064. b) Evano, G.; Jouvin K.; Coste, A. Synthesis 2013, 45, 17. c) Wang, X.;
Yeom, H.; Fang, L.; He, S.; Ma, Z.; Kedrowski B. L.; Hsung, R. P. Acc. Chem.
Res. 2014, 47, 560.
9. Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 13314.
10. Lonzi, G.; Lo´pez, L. A. Adv. Synth. Catal. 2013, 355, 1948.
11. a) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728. b)
Raczyńska, E. J.; Kosińska, W.; Osmialowski, B.; Gawinecki, R. Chem. Rev.
2005, 105, 3561. c) Druellinger, M. L. J. Heterocycl. Chem. 1976, 13, 1001. d)
Xu, Z.-J.; Zhu, D.; Zeng, X.; Wang, F.; Tan, B.; Hou, Y.; Ly, Y.; Zhong, G.
Chem. Commun. 2010, 46, 2504.
12. a) Lou, Y.; Horikawa, M.; Kloster, R. A. J. Am. Chem. Soc. 2004, 126, 8916. b)
Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. c) Briones, J. F.; Hansen,
J.; Hardcastle, K. I. J. Am. Chem. Soc. 2010, 132, 17211. d) Goto, T.; Takeda, K.;
Shimada, N. Angew. Chem. Int. Ed. 2011, 50, 6803.
13. Cui, X.; Xu, X.; Lu, H. J. J. Am. Chem. Soc. 2011, 133, 3304.
370
14. Uehara, M.; Suematsu, H.; Yasutomi, Y. J. Am. Chem. Soc. 2011, 133, 170.
15. a) Briones, J. F.; Davies, H. M. L. Org. Lett., 2011, 13, 3984. b) Briones, J. F.;
Davies, H. M. L. J. Am. Chem. Soc., 2012, 134 ,11916.
16. a) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268. b)
Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
17. Qiu, L.; Huang, D.; Xu, G.; Dai, Z.; Sun, J. Org. Lett. 2015, 17, 1810.
18. Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Angew. Chem. Int. Ed. 2015,
54, 12962.
19. a) Doyle, M. P.;In Comprehensive Organometallic Chemistry II, E. W. Abel, F.
G. A. Stone, Ed.; Pergamon: Oxford UK, vol 12, 387-469. b) Doyle, M. P.;
McKervy, M. A.; Ye, T.; Modern Catalytic Method for Organic Synthesis with
Diazo Compounds: From Cyclopropanes to Ylides; Wiley; New York, 1998. c)
Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Zhang, Z.;
Wang, J. Tetrahedron 2008, 64, 6577. e) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016,
45, 506-516. f) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91.
20. For chemistry of cyclopropene compounds, see selected reviews: a) Padwa, A.
Acc. Chem. Res. 1979, 12, 310. b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem.
Rev. 2007, 107, 3117. c) Walsh, R. Chem. Soc. Rev. 2005, 34, 714. d) Baird, M.
S. Chem. Rev. 2003, 103, 1271.
21. For the utility of alkylidenecyclopropane derivatives, see recent reviews: a)
Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2014, 114, 7317. b)
Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913.
22. Rh: a) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am.
Chem. Soc. 2013, 135, 1463. b) Davis, H. M. L.; Lee, G. H. Org. Lett. 2004, 13,
2117. c) Edwards, A.; Rubin, M. Tetrahedron 2015, 71, 3237. d) Denton, J. R.;
Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238. e) Adly, F. G.;
Gardniner, M. G.; Ghanem, A. Chem. Eur. J. 2016, 22, 3447. Cu: f) Swenson, A.
K.; Higgins, K. E.; Brewer, M. G.; Brennessel, W. W.; Coleman, M. G. Org.
Biomol. Chem. 2012, 10, 7483. g) Thomas, T. J.; Merritt, B. A.; Lemma B. E.;
Mckoy, A. M.;. Nguyen, T. N; Swenson, A. K.; Mills, J. L.; Coleman, M. G. Org.
Biomol. Chem. 2016, 14, 1742. Ag: h) Briones, J. F.; Davis, H. M. L. Org. Lett.
2011, 13, 3984. Co: i) Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X. P.
J. Am. Chem. Soc. 2011, 133, 3304. Ir: j) Uehara, M.; Suematsu, H.; Yasutomi,
371
Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170. Au: k) Briones, J. F.; Davis, H.
M. L. J. Am. Chem. Soc., 2012, 134, 11916.
23. Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268.
24. See selected examples: a) Gregg, T. M.; Farrugia, M. K.; Frost, J. R. Org. Lett.
2009, 11, 4434. b) Huval, C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020.
c) Ma, S.; Zhang. J. Angew. Chem. Int. Ed. 2003, 42, 183. d) Lu, T.; Hayashi, R.;
Hsung, R. P.; De Kover, K. A.; Lohse, A. G.; Song, Z.; Tang, Y. Org. Biomol.
Chem. 2009, 7, 3331. e) Lindsay, V. N.; Fiset, D.; Gritsch, P. J.; Azzi, S.;
Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463.
25. a) Zhang, L. Acc. Chem. Res. 2014, 47, 877. b) Hashmi, A. S. K. Angew. Chem.
Int. Ed. 2008, 47, 6754. c) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130,
16488. d) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W.
A.; Toste, F. D. Nature Chemistry 2009, 1, 482. e) Seidel, G.; Mynott, R.;
Fürstner, A. Angew. Chem. Int. Ed. 2009, 48, 2510. f) Jiménez-Núñez, E.;
Clavarie, C. K.; Bour, C.; Cardenas, C. D. J.; Echavarren, A. M. Angew. Chem.
Int. Ed. 2008, 47, 7892.
26. a) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. b) Bauer, J. T.;
Hadfield, M. S.; Lee, A.-L. Chem. Commun., 2008, 6405. c) Hadfield, M. S.;
Jonas, L.; Haller, L.; Lee, A.-L.; Maegregor, S. A.; O’neill, J. A. T.; Watson, A.
M. Org. Biomol. Chem. 2012, 10, 4433.
27. x-ray crystallographic data of compounds 3a’, 4a, 7a and 6d were deposited in
Cambridge Crystallographic Data Center: 3a’, CCDC 1469310; 4a CCDC
1469309; 7a 1469306 and 6d 1469307.
28. See selected examples: a) Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Yu, C.; Zhu, J. J.
Am. Chem. Soc. 2013, 135, 468. b) Clot, E.; Besora, M.; Baseras, F.; Megret, C.;
Einstein, O.; Oelckers, B.; Perutz, R. N. Chem. Commun. 2003, 490. c) M. E.
Evans, C. L. Burke, S. Yaihuathes, E. Clot, O. Eisenstein, W. D. Jones, J. Am.
Chem. Soc. 2009, 131, 13464.
29. For gold-carbenes generated from the decomposition of α-diazo esters, see
selected examples: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.
M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126,
10846. b) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur,
H.; Dıaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284. c)
372
Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014,
136, 6904. d) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J.
2013, 19, 1573. e) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew.
Chem. Int. Ed. 2014, 53, 11070. f) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal.
2013, 355, 1948. g) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc.
2011, 133, 20728. h) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int.
Ed. 2012, 51, 11809. i) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54,
4923.
30. Reviews for ynamides and allenynamides, see: a) Wang, X.-N.; Yeom, H.-S.;
Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res.
2014, 47, 560. b) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.;
Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064. c) Evano, G.; Coste, A.;
Jouvin, K. Angew. Chem. Int. Ed. 2010, 49, 2840. d) Evano, G.; Theunissen, C.;
Lecomte, M. Aldrichimica Acta 2015, 48, 59. e) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang,
Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.
31. For natural products containing 1-aminoindane cores, see a) Binda, C.; Hubalek,
F.; Li, M.; Sterling, J.; Edmondson, D. E.; Mattevi, A. J. Med. Chem. 2005, 48,
8148. b) Rascol, O.; Brooks, J. D.; Melamed, E.; Stocchi, F.; Tolosa E. Lancet
2005, 365, 947. c) Binda, C.; Hubalek, F.; Li, M.; Sterling, J.; Edmondson, D. E.;
Mattevi; A. J. Med. Chem. 2005, 48, 8148. d) Tian, S.; Zi, W.; Ma, D. Angew.
Chem. Int. Ed. 2012, 51, 10141.
4 References:
1. a) P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, John
Wiley & Sons Inc., Chichester, 2009. b) D. H. R. Barton, K. Nakanishi, O.
MethCohn and J. W. Kelly, Comprehensive Natural Products Chemistry,
Pergamon Press, Oxford, 1999. c) Kochanowska-Karamyan A. J.; Hamann, M. T.
Chem. Rev. 2010, 110, 4489. d) O’Connor S. E.; Maresh, J. J. Nat. Prod. Rep.
2006, 23, 532.
2. a) Bradfield, C. A.; Bjeldanes, L. F. J. Toxicol. Environ. Health 1987, 21, 311. b)
Dashwood, R. H.; Uyetake, L.; Fong, A. T.; Hendricks, J. D.; Bailey, G. S. Food
Chem. Toxicol. 1987, 27, 385.
3. Zeligs, M. A. J. Med. Food. 1998, 1, 67.
4. a) Pindur U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1. b) G. W. Gribble, J.
Chem. Soc., Perkin Trans. 1, 2000, 1045. c) G. R.; Humphrey, J. T.; Kuethe,
Chem. Rev., 2006, 106, 2875.
5. a) Cacchi , S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. b) Bandini M.;
Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. c) Patil S.; Patil, R. Curr.
Org. Synth, 2007, 4, 201. c) Bandini, M.; Melloni, A.; Tommasi S.;
Umani-Ronchi, A. Synlett, 2005, 1199.
6. a) Muthusamy, S.; Gunanathan, C.; Babu, S. A.; Suresh E.; Dastidar, P. Chem.
Commun. 2002, 824. b) Gibe R.; Kerr, M. A. J. Org. Chem. 2002, 67, 6247. c)
Muthusamy S.; Gnanaprakasam, B. Tetrahedron Lett. 2008, 49, 475. d) Zhu,
S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580. e) DeAngelis, A.; Shurtleff, V.
W.; Dmitrenko O.; Fox, J. M. J. Am. Chem. Soc. 2011, 133, 1650. f) Goto, T.;
Natori, Y.; Takeda, K.; Nambu H.; Hashimoto, S. Tetrahedron: Asymmetry,
2011, 22, 907.
7. a) Yadav, J. S.; Reddy B. V. S.; Satheesh, G. Tetrahedron Lett. 2003, 44, 8331. b)
Zhang, X.-J.; Liu S.-P.; Yan, M.; Chin. J. Chem. 2008, 26, 716. c) Johansen, M.
B.; Kerr, M. A. Org. Lett. 2010, 12, 4956. d) Cai, Y.; Zhu, S.-F.; Wang G.-P.;
Zhou, Q.-L. Adv. Synth. Catal. 2011, 353, 2939.
8. a)Yadav, J. S.; Reddy, B. V. S.; Murthy, Ch. V. S. R.; Mahesh Kumar, G.;
Madan, Ch. Synthesis 2001, 783. b) Babu, G.; Sridhar, N.; Perumal, P. T. Synth.
Commun. 2000, 30, 1609. c) Bandgar, B. P.; Shaikh, K. A. Tetrahedron Lett.
527
2003, 44, 1959. d) Mo, L.-P.; Ma, Z.-C.; Zhang, Z.-H. Synth. Commun. 2005, 35,
1997.
9. a) Singh, P. R.; Singh, D. U.; Samant, S. D. Synth. Commun. 2005, 35, 2133. b)
Li, W.-J.; Lin, X.-F.; Wang, J.; Li, G.-L.; Wang, Y.-G. Synth. Commun. 2005, 35,
2765. c) Li, J.-T.; Dai, H.-G.; Xu, W.-Z.; Li, T.-S. Ultrason. Sonochem. 2006, 13,
24. d) Raju, B. C.; Rao, J. M. Ind. J. Chem. 2008, 623. e) Nagarajan, R.; Perumal,
P. T. Chem. Lett. 2004, 3, 288.
10. For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary
Carbene Chemistry, John Wiley & Sons, 2013.
11. For selected reviews on C–H bond insertion by metal carbenoids: a) Doyle M. P.;
Forbes, D. C. Chem. Rev. 1998, 98, 911. b) Davies H. M. L.; Antoulinakis, E. G.
J. Organomet. Chem. 2001, 47, 617. c) Davies, H. M. L.; Beckwith, R. E. J.
Chem. Rev. 2003, 103, 2861. d) Davies, H. M. L; Manning, J. R. Nature
2008, 451, 417. e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev.
2010, 110, 704. f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron
2010, 66, 6681. g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem.
2011, 9, 4007. h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
12. Chan, W.-W.; Yeung, S. –H.; Zhou, Z.; Chan, A. S. C.; Yu W. -Y. Org. Lett.
2010, 12, 604.
13. For selected examples of C3-selective alkylations of indoles, see: a) Hong, L.;
Wang, L.; Chen, C.; Zhang, B.; Wang, R. AdV. Synth. Catal. 2009, 351, 772. b)
Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed.
2008, 47, 593. c) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008,
47, 4061. d) Dong, H.-M.; Lu, H.-H.; Lu, L.-Q.; Chen, C.-B.; Xiao, W.-J. Adv.
Synth. Catal. 2007, 349, 1597. e) Chen, W.; Du, W.; Yue, L.; Li, R.; Wu, Y.;
Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem. 2007, 5, 816. f) Blay, G.;
Ferna´ndez, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601. g) Yang, H.; Hong,
Y.-T.; Kim, S. Org. Lett. 2007, 9, 2281. h) Bartoli, G.; Bosco, M.; Carlone, A.;
Pesciaioli, F.; Sambri, L.; Melchiorre, P. Org. Lett. 2007, 9, 1403.
14. Li, D.; Wu, T.; Liang, K.; Xia, C. Org. Lett. 2016, 18, 2228.
15. Bayindirab, S.; Saracoglu N. RSC Adv. 2016, 6, 72959.
16. Auvil, T. J.; So, S. S.; Mattson, A. E. Angew. Chem. Int. Ed. 2013, 52, 11317.
528
17. Xiang, J.; Wang, J.; Wang, M.; Meng, X.; Wu, A. Org. Biomol. Chem. 2015, 13,
4240.
18. Li, M.; Guo, X.; Jin, W.; Zheng, Q.; Liu, S.; Hu, W. Chem. Commun. 2016, 52,
2736.
19. Rh: a) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am.
Chem. Soc. 2013, 135, 1463. b) Davis, H. M. L.; Lee, G. H. Org. Lett. 2004, 13,
2117. c) Edwards, A.; Rubin, M. Tetrahedron 2015, 71, 3237. d) Denton, J. R.;
Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238. e) Adly, F. G.;
Gardniner, M. G.; Ghanem, A. Chem. Eur. J. 2016, 22, 3447. Cu: f) Swenson, A.
K.; Higgins, K. E.; Brewer, M. G.; Brennessel, W. W.; Coleman, M. G. Org.
Biomol. Chem. 2012, 10, 7483. g) Thomas, T. J.; Merritt, B. A.; Lemma B. E.;
Mckoy, A. M.; Nguyen, T. N; Swenson, A. K.; Mills, J. L.; Coleman, M. G. Org.
Biomol. Chem. 2016, 14, 1742. Ag: h) Briones, J. F.; Davis, H. M. L. Org. Lett.
2011, 13, 3984. Co: i) Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X. P.
J. Am. Chem. Soc. 2011, 133, 3304. Ir: j) Uehara, M.; Suematsu, H.; Yasutomi,
Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170. Au: k) Briones, J. F.; Davis, H.
M. L. J. Am. Chem. Soc., 2012, 134, 11916.
20. a) Comprehensive reviews on -diazocarbonyl compounds, see: Ye, T.;
McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew.
Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev.
1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle
M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet.
Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A.
Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev.
2003, 103, 2861.
21. a) Maier, T. C.; Fu, G. C. Catalytic Enantioselective O-H Insertion Reactions. J.
Am. Chem. Soc. 2006, 128, 4594. b) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.;
Zhou, Q.-L. Highly Enantioselective Insertion of Carbenoids into O-H Bonds of
Phenols: J. Am. Chem. Soc. 2007, 129, 12616. c) Lee, E. C.; Fu, G. C.
Copper-Catalyzed Asymmetric N-H Insertion Reactions: Couplings of Diazo
Compounds with Carbamates to Generate R-Amino Acids. J. Am. Chem. Soc.
2007, 129, 12066. d) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L.
529
Enantioselective Iron-Catalysed O-H Bond Insertions. Nat. Chem. 2010, 2, 5461.
e) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. Enantioselective
Copper-Catalyzed Intramolecular O-H Insertion: An Efficient Approach to
Chiral 2-Carboxy Cyclic Ethers. J. Am. Chem. Soc. 2010, 132, 16374. f)
Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
22. a) Doyle, M. P.; In Comprehensive Organometallic Chemistry II, E. W. Abel, F.
G. A. Stone, Ed.; Pergamon: Oxford UK, vol 12, 387. b) Doyle, M. P.; McKervy,
M. A.; Ye, T.; Modern Catalytic Method for Organic Synthesis with Diazo
Compounds: From Cyclopropanes to Ylides; Wiley; New York, 1998. c) Davies,
H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Zhang, Z.; Wang, J.
Tetrahedron 2008, 64, 6577. e) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
f) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. g) Ford, A.; Miel, H.; Ring, A.;
Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
23. Copper-catalyzed Reaction of diazo compound: a) Díaz-Requejo M. M.;,
Mairena, M. A.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Pérez, P. J.
Chem. Commun. 2001, 1804. b) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem.
Soc. 2008, 130, 17268. c) Harrar, K.; Reiser, O. Chem. Commun. 2012, 48, 3457.
d) Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010
, 35, 6719. e) Peng, C.; Cheng, J.; Wang, J. Adv. Synth. Catal. 2008, 350, 2359.
24. Rhodium-catalyzed reaction of diazo compound: a) Yong, K.; Salim, M.; Capret
-ta, A. J. Org. Chem. 1998, 63, 9828. b) Lawlor, M. D.; Lee, T. W.; Danheiser,
R. L. J. Org. Chem. 2000, 65, 4375, Cyclopropanation c) Wang, H.
B.; Guptill, D. M.; Varela-Alvarez, A.; Musaev, D. G.; Davies, H. M. L. Chem.
Sci. 2013, 4, 2844. d) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. e)
Honey, M. A.; Blake, A. J.; Campbell, I. B.; Judkins, B. D.; Moody, C. J.
Tetrahedron 2009, 65, 8995. f) Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang,
L.; Hu, W. Angew. Chem., Int. Ed. 2008, 47, 6647. g) Qiu, H.; Li, M.; Jiang,
L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem. 2012,
4, 733. h) Lian, Y.; Davies, H. M. L. Org. Lett. 2012, 14, 1934.
25. Fe: a) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010,
2, 546. b) Nicolas, I.; Roisnel, T.; Maux, P. L.; Simonneaux, G. Tetrahedr
-on Lett. 2009, 50, 5149. c) Gao, X.; Wu, B.; Huang, W.-X.; Chen, M.-W.; Zhou
Y.-G. Angew. Chem. Int. Ed. 2015, 54, 11956 Ru: d) Chanthamath, S.; Phomkeo
530
-na, K.; Shibatomi, K.; Iwasa, S. Chem. Commun. 2012, 48, 7750. e) Chanthamat
-h, S.; Takaki, S.; Shibatomi, K.; Iwasa, S. Angew. Chem., Int. Ed. 2013, 52,
5818, Ir (III): f) Anding, B. J.; Ellern, A.; Woo, L. K. Organometallics 2012, 31,
3628. g) Uehara, M.; Suematsu, H.; Yasutomi, Y.; Katsuki, T. J. Am. Chem.
Soc. 2011, 133, 170.
26. Selected examples: a) Lian, Y.; Davies, H. M. L. Org. Lett. 2010, 12, 924. b)
Yadav, J. S.; Reddy, B. V. S.; Satheesh, G. Tetrahedron Lett. 2003, 44, 8331. c)
Gibe, R.; Kerr, M. A. J. Org. Chem. 2002, 67, 6247. d) Muthusamy, S.;
Gunanathan, C.; Babu, S. A.; Suresh, E.; Dastidar, P. Chem. Commun. 2002, 824.
e) Johansen, M. B.; Kerr, M. A. Org. Lett. 2010, 12, 4956. For a useful review,
see: f) Davies, H. M. L.; Hedley, S. J. Chem. Soc. Rev. 2007, 36, 1109.
27. a) Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131, 6013. b)
Shen, L.; Zhang, M.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618. c) He, B.;
Song, H.; Qin, Y. J. Org. Chem. 2009, 74, 298. d) Yang, J.; Wu, H.; Shen, L.;
Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. Indole alkaloids with BIM as core
structure: e) Jella, R. R.; Nagarajan, R. Tetrahedron 2013, 69, 10249. f) Abe, T.;
Nakamura, S.; Yanada, R.; Choshi, T. Hibino, S.; Ishikura, M. Org. Lett. 2013,
15, 3622.
28. Selected Review see: a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchia
-n, Z. Chem. Rev. 2010, 110, 2250. b) Shiri, M. Chem. Rev. 2012, 112, 3508.
Selected Examples: c) X.; Guo, S.; Pan, J.; Liu, Li, Z. J. Org. Chem. 2009, 74,
8848. d) Grosso, C.; Cardoso, A. L.; Lemos, A.; Varela, J.; Rodrigues, M. J.;
Custodio, L.; Barreira, T. L.; PinhoMelo M.V.D. European J. Med. Chem. 2015,
93, 9. e) Lucarini, S.; Mari, M.; Piersanti, G.; Spadoni, G. RSC Adv. 2013, 3,
19135.
29. Construction of BIMs via reaction of indole with terminal alkynes: a) Kitamura,
T. Eur. J. Org. Chem. 2009, 1111. b) Barluenga, J.; Fernández, A.; Rodríguez, F.;
Fañanás, F. J. J. Organomet. Chem. 2009, 694, 546. c) Ferrer, C.; Amijs, C. H.
M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358. d) Yadav, J. S.; Reddy, B.
V. S.; Padmavani, B.; Gupta, M. K. Tetrahedron Lett. 2004, 45, 7577.
30. x-ray crystallographic data of compounds 4-3j, and 4-3p were deposited in
Cambridge Crystallographic Data Center: 4-3j, CCDC 1501651; 4-3p’ CCDC
1501652.
531
31. For gold-carbenes generated from the decomposition of α-diazo esters, see
selected examples: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.
M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126,
10846. b) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur,
H.; Dıaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284. c)
Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014,
136, 6904. d) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J.
2013, 19, 1573. e) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew.
Chem. Int. Ed. 2014, 53, 11070. f) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal.
2013, 355, 1948. g) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc.
2011, 133, 20728. h) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int.
Ed. 2012, 51, 11809. i) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54,
4923.