簡易檢索 / 詳目顯示

研究生: 游翰思
Hutabalian, Yohanes
論文名稱: 銦與 Bi2(Se,Te)3熱電基材介面反應及 Bi-In-Se液相線投影圖
Interfacial reactions between Indium and Bi2(Se,Te)3 thermoelectric materials and the Bi-In-Se liquidus projection
指導教授: 陳信文
Chen, Sinn-wen
口試委員: 陳洋元
Chen, Yang-Yuan
紀渥德
Gierlotka, Wojciech
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 158
中文關鍵詞: 相圖界面反應熱電材料Bi-In-Se三元系統(Bi,Sb)2(Se,Te)3
外文關鍵詞: Phase diagram, interfacial reactions, thermoelectric materials, Bi-In-Se system, (Bi,Sb)2(Se,Te)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料能提升能源的使用效率,將其搭配太陽能板使用時更能當作新的再生能源,因此吸引了大量的研究熱潮。Bi2(Sb,Te)3和Bi¬2(Se,Te)3是最常使用的熱電材料,據報導得知,它們的熱電性質可以藉由摻雜In來改善。它們通常被使用在熱電模組中的接點,且其含有In的合金也頻繁的被當作焊接劑使用。相圖能提供物質基礎的資訊,對物質的發展能有一定程度的了解。界面反應的知識對接點的評估十分重要。此論文分成兩個部分,第一個部分是Bi-In-Se液相線投影圖,第二個部分是In/Bi2Se3的界面反應。論文中相關的數據是之前文獻中所缺少的,其對Bi2(Sb,Te)3和Bi2(Se,Te)3為基底的熱電模組相當重要。Bi-In-Se液相線投影圖是以實驗得到的結果,除了Se區域外,此系統的首要析出相為Bi2Se3, In2Se3, In6Se7, InSe, In4Se3, In, , BiIn2, Bi3In5, BiIn, Bi, 和(Bi2)m(Bi2Se3)n¬相;不變反應包含了L=In2Se3+Bi2Se3+Se, L+In2Se3+InSe=In6Se7, L+Bi+InSe=In2Se3, L+In2Se3=(Bi2)m(Bi2Se3)n+Bi, L+In2Se3=Bi2Se3+(Bi2)m(Bi2Se3)n, L+InSe=Bi+BiIn, L+InSe=In4Se3+BiIn2, L+In4Se3+In=, L+InSe+BiIn=Bi3In5, L+InSe=Bi3In5+BiIn2 和 L=In4Se3+BiIn2+ 。此系統有三個鞍點與三個不互溶區間。第二個部分是In與Bi2(Se,Te)3熱電材料的界面反應,此界面反應分別是In/Bi2Te3反應偶在溫度140、200和400oC; In/Bi2Se3反應偶在溫度100、140、200、250和400oC; In/Bi2(Se,Te)3在溫度200和250oC。在反應溫度140oC In/(Sb,Bi)2Te3固固反應偶中發現三元的介金屬相,同時在反應時間90天,反應溫度140oC 的In/Bi2Se3反應偶中並沒有明顯的界面反應。在液固反應偶中皆有界面反應的發生,像是在反應溫度250oC的In/Bi2Se3反應偶中觀察到In4Se3、InSe、In2Se3和(Bi2)m(Bi2Se3)n相;反應溫度250oC的In/(Sb,Bi)2Te3反應偶中觀察到In4Te3、InTe和In3Te3-x(Sb,Bi)x相。以上觀察到的相皆使用掃描式電子顯微鏡與電子微探儀進行顯微圖與組成分析,此外相的晶體繞射與不變反應溫度使用X-ray粉末繞射分析與熱差分析進行檢測.


    Thermoelectrics have attracted a lot of research interests primarily because of their potentials in enhancing the energy usage efficiency and as renewable energy sources when used together with solar heating panels. Bi2(Sb,Te)3 and Bi2(Se,Te)3 are the most commonly used thermoelectric materials. It has been reported that their thermoelectric properties could be improved with indium doping. There are usually numerous joints in thermoelectric modules. Indium-containing alloys are frequently used as solders. Phase diagrams provide fundamental information and are essential for materials understanding and development. Knowledge of interfacial reactions is critical for the reliability assessment of joints. This study has two parts. One part is the determination of phase diagram, Bi-In-Se liquidus projection, and the other part is interfacial reaction investigation of the In/Bi2Se3 interfacial reactions. The related data are previously lacking in the literature but are important for the development of the Bi2(Sb,Te)3 and Bi2(Se,Te)3-based thermoelectric modules. The experimental determinations of the Bi-In-Se liquidus projection reveal, except for Se regime, the primary solidification phases are Bi2Se3, In2Se3, In6Se7, InSe, In4Se3, In, , BiIn2, Bi3In5, BiIn, Bi, and (Bi2)m(Bi2Se3)n phases, respectively. The invariant reactions include L=In2Se3+Bi2Se3+Se, L+In2Se3+InSe=In6Se7, L+Bi+InSe=In2Se3, L+In2Se3=(Bi2)m(Bi2Se3)n+Bi, L+In2Se3=Bi2Se3+(Bi2)m(Bi2Se3)n, L+InSe=Bi+BiIn, L+InSe=In4Se3+BiIn2, L+In4Se3+In=, L+InSe+BiIn=Bi3In5, L+InSe=Bi3In5+BiIn2, and L=In4Se3+BiIn2+. There are three saddle points and three miscibility gaps in the system. The second part is the interfacial reactions between Indium and Bi2(Se,Te)3 thermoelectric materials. Those reacted couples are In/Bi2Te3 at 140, 200, 400oC, In/Bi2Se3 at 100, 140, 200, 250, 400oC, In/(Sb,Bi)2Te3 at 140, 200, 250oC, and In/Bi2(Se,Te)3 at 200, 250oC. Ternary intermetallic compound is found in the solid/solid couples In/(Sb,Bi)2Te3 reacted at 140oC meanwhile no significant interfacial reactions are found in In/Bi2Se3 couples reacted at 140oC for up to 90 days. Complex and significant interfacial reactions occur in all the liquid/solid. For example, In4Se3, InSe, In2Se3 and (Bi2)m(Bi2Se3)n phases in the In/Bi2Se3 couples reacted at 250oC and In4Te3, InTe and In3Te3-x(Sb,Bi)x phases in the In/(Sb,Bi)2Te3 at 250oC are observed. All the phase micrographs and the compositions are determined using Scanning Electron Microscope (SEM) and electron probe microanalysis (EPMA). The crystal diffractions and invariant temperatures were examined using X-ray powder diffraction (XRD) and differential thermal analysis (DTA), respectively.

    Abstract I 摘要 II Contents III List of Figures VI List of Tables XIV Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1 Bismuth Selenium (Bi2Se3) 4 2.2 Phase Diagrams 4 2.2.1 Liquidus Projection 5 2.2.2 Bi-In Binary System 7 2.2.3 In-Se Binary System 8 2.2.4 Bi-Se Binary System 8 2.2.5 In-Te Binary System 9 2.2.6 Bi-Te Binary System 9 2.2.7 In-Sb Binary System 10 2.2.8 Sb-Bi Binary System 10 2.2.9 Sb-Te Binary System 10 2.2.10 Se-Te Binary System 11 2.2.11 Bi2Se3-In2Se3 11 2.2.12 Bi2Se3-InSe 11 2.2.13 Bi2Te3-Bi2Sb3 11 2.2.14 Sb-In-Te ternary system 12 2.2.15 Bi-In-Se ternary system 12 2.2.16 Miscibility Gap 12 2.2.17 Interfacial reactions 13 Chapter 3. Experimental Procedures 25 3.1 Bi-Se-In Ternary System 25 3.2 Characterization 25 3.3 Synthesis Thermoelectric Substrates 26 3.4 Interfacial Reactions 26 Chapter 4. Results and Discussion 28 4.1 Liquidus Projection 28 4.1.1 Bi2Se3 Phase Regime 30 4.1.2 Se Phase Regime 31 4.1.3 In2Se3 Phase Regime 35 4.1.4 In6Se7 Phase Regime 39 4.1.5 InSe Phase Regime 42 4.1.6 In4Se3 Phase Regime 43 4.1.7 In Phase Regime 50 4.1.8  Phase Regime 53 4.1.9 BiIn2 Phase Regime 56 4.1.10 Bi3In5 Phase Regime 56 4.1.11 BiIn Phase Regime 61 4.1.12 Bi Phase Regime 61 4.1.13 (Bi2)m(Bi2Se3)n Phase Regime 66 4.1.14 Miscibility gap 66 4.1.15 Invariant reactions determination 73 4.2 In/Bi2Se3 Interfacial Reactions 81 4.2.1 In/Bi2Se3 at 100oC (solid/solid) 81 4.2.2 In/Bi2Se3 at 140oC (solid/solid) 81 4.2.3 In/Bi2Se3 at 200oC (liquid/solid) 86 4.2.4 In/Bi2Se3 at 250oC (liquid/solid) 90 4.2.5 In/Bi2Se3 at 400oC (liquid/solid) 97 4.3 In/Bi2Te3 Interfacial Reactions 103 4.3.1 In/Bi2Te3 at 140oC (solid/solid) 103 4.3.2 In/Bi2Te3 at 200oC (liquid/solid) 107 4.3.3 In/Bi2Te3 at 4000C (liquid/solid) 112 4.4 In/(Sb,Bi)2Te3 Interfacial Reactions 119 4.4.1 In/(Sb,Bi)2Te3 interfacial reactions at 140oC 119 4.4.2 In/(Sb,Bi)2Te3 interfacial reactions at 200oC 125 4.4.3 In/(Sb,Bi)2Te3 interfacial reactions at 250oC 130 4.5 In/Bi2(Se,Te)3 Interfacial Reactions 138 4.5.1 In/Bi2(Se0.2Te0.8)3 interfacial reactions at 2000C 138 4.5.2 In/Bi2(Se0.2Te0.8)3 interfacial reactions at 2500C 141 4.6 Comparison interfacial reactions In/Bi2(Se,Te)3-based 148 Chapter 5. Conclusions 151 References 152 Acknowledgments 158

    [1] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy & Environmental Science, Vol. 2, pp. 466–479, (2009).
    [2] T.M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and application: A bird’s eye view”, MRS Bulletin, Vol. 31, pp. 188-194, (2006).
    [3] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials”, Nature Materials, Vol. 7(2), pp. 105-114, (2008).
    [4] J. Y. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, “Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1-x prepared by bulk mechanical alloying and hot pressing”, Journal of Alloys and Compounds, Vol. 312(1-2), pp. 326-330, (2000).
    [5] Xun, Shi, et al. "Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports." Journal of the American Chemical Society, Vol. 133(20), pp. 7837-7846, (2011).
    [6] Wang, Yang, et al. "Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication." Journal of Applied Physics, Vol. 107(3), pp. 033708(1-9), (2010).
    [7] Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R. & Venkatasubramanian, R. “On-chip cooling by superlattice-based thin-film thermoelectrics”, Nature Nanotechnology, Vol. 4(4), pp. 235-238, (2009).
    [8] Rainer, S-f. “Phase diagrams: the beginning of wisdom”, Journal of phase Equilibria and diffusion, Vol. 35(6), pp. 735-760, (2014).
    [9] P. Lostak, J. Navratil, J. Sramkova, and J. Horak. “(Bi0.5Sb0.5)2Te3 crystals doped with indium atoms”, Physice status solidi, Vol. 135 (2), pp. 519-526, (1993)
    [10] Zhang, Qian. et al. “Study of the thermoelectric properties of lead Selenide doped with boron, gallium, indium, or thallium”, Journal of the American society, Vol. 134 (42), pp. 17731-17738, (2012).
    [11] Chiu, Wan-Ting, Cheng-Lung Chen, and Yang-Yuan Chen. "A strategy to optimize the thermoelectric performance in a spark plasma sintering process." Scientific reports, Vol. 6, 23143, (2016).
    [12] H. Okamoto, “Bi-In (bismuth-indium)”, Binary Alloy Phase Diagram. 2 ed., Vol.1, pp. 748-751, (1990).
    [13] Currie, P. D, Finlayson, T. R., Smith, T. F. “The phase diagram for In-rich In-Bi alloys”, J. Less Common Met., Vol. 62, pp. 13. (1978).
    [14] Hansen, M, Anderko, K. “Constitution of Binary Alloys”, 2 ed., New York, McGraw-Hill Book Comp. (1958).
    [15] H. Okamoto, “In-Se (indium-selenium)”, Binary Alloy Phase Diagrams, 2 ed., Vol. 3, pp. 2288-2292, (1990).
    [16] T.Gödecke, T. Haalboom, and F. Sommer, “Stable and metasable phase equilibria of the In-Se System”, Zeitschrift für Metallkunde, Vol. 94(4), pp. 381-389, (2003).
    [17] H. Okamoto, “Bi-Se (bismuth-selenium)”, Binary Alloy Phase Diagrams, 2 ed., Vol. 1, pp. 790-792, (1990).
    [18] H.G. Bouanani, D. Eddike, B. Liautard, and G. Brun, “Solid state demixing in Bi2Se3-Bi2Te3 and Bi2Se3-In2Se3 phase diagrams”, Materials Research Bulletin, Vol. 31, pp. 177-187, (1996).
    [19] S. W. Chen, S. T. Lu, J. S. Chang, “Bi-In-Te phase diagram”, Journal of Alloys and Compounds, Vol. 722, pp. 499-508, (2017).
    [20] Lan, Y. C., Wang, D. Z., Chen, G., & Ren, Z. F. “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se3) thermoelectric materials”, Applied Physics Letters, Vol. 92(10), pp. 101910. (2008).
    [21] Chen, S. W., Yang, T. R., Wu, C. Y., Hsiao, H. W., Chu, H. S., Huang, J. D., & Liou, T. W. “Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples”, Journal of Alloys and Compounds, Vol. 686, pp. 847-853, (2016).
    [22] Chen, S. W., Wu, C. Y., Wu, H. J., & Chiu, W. T. “Interfacial reactions in Sn/Bi2Te3, Sn/Bi2Se3 and Sn/Bi2(Te1−xSex)3 couples”, Journal of Alloys and Compounds, Vol. 611, pp. 313-318, (2014).
    [23] Zeng, K., & Tu, K. N. “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering: R: reports, Vol. 38(2), pp. 55-105, (2002).
    [24] Chen, S. W., Wang, C. H., Lin, S. K., & Chiu, C. N. “Phase diagrams of Pb-free solders and their related materials systems”, Journal of Materials Science: Materials in Electronics, Vol. 18(1-3), pp. 19-37, (2007).
    [25] H. H. Manco, “solders and soldering”, McGraw-Hill, 3 ed., pp. 143, (1992).
    [26] Zhang, H., Liu, C. X., Qi, X. L., Dai, X., Fang, Z., & Zhang, S. C. “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface”, Nature Physics, Vol. 5(6), pp. 438-442, (2009).
    [27] Hor, Yew San, et al. "p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications," Physical Review B, Vol. 79(19), pp. 195208(1-5), (2009).
    [28] Mishra, S. K., S. Satpathy, and O. Jepsen. "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide," Journal of Physics: Condensed Matter, Vol. 9(2), pp. 461-470, (1997).
    [29] Lošťák, P., Beneš, L., Civiš, S., & Süssmann, H. "Preparation and some physical properties of Bi2−xInxSe3 single crystals." Journal of materials science, vol. 25(1), pp. 277-282, (1990).
    [30] Campbell, F.C. “Phase Diagrams: Understanding the Basics”, Materials Park, Ohio: ASM International, cop, (2012).
    [31] F.N. Rhines. “Phase diagrams in metallurgy, Their Development and Application”, McGraw-Hill, New York, NY, (1956).
    [32] Chen, S. W., Chang, Y. A., “Microsegregation in solidification for ternary alloys”, Metallurgical Transactions A, Vol. 23(3), pp. 1038-1043, (1992).
    [33] Currie, P. D., Finlayson, T. R., Smith, T. F. “The phase diagram for In-rich In-Bi alloys”, J. Less Common Met., Vol. 62, pp. 13. (1978).
    [34] Hansen, M., Anderko, K. “Constitution of binary alloys”, 2 ed., New York, McGraw-Hill Book Comp, (1958).
    [35] J.J. Zhang and G.Q. Huang, “Phonon dynamics in (Bi2Se3)m(Bi2)n infinitely adaptive series”, Solid State Communications, Vol. 197, pp. 34–39, (2014).
    [36] H. Lind, S. Lidin, and U. Haussermann, “Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first principles density functional theory”, Physical Review B, Vol. 72(18), pp. 572-576, (2005).
    [37] W. Klemm and H. U. von Vogel, “Messungen an gallium und indium verbindungen. X. über die chalkogenide von gallium und indium”, Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 219(1), pp. 45-64, (1934).
    [38] E.G. Grochowski, D. R. Mason, G. A. Schmitt, D. R. Mason, and P. H. Smith, “Phase diagram for binary system indium-tellerium and electrical properties of In3Te5”, Journal of Physics and Chemistry of Solids, Vol. 25(6), pp. 551-558, (1964).
    [39] M. Wobst, “Verlauf der mischungslucken der binaren systeme silber-tellur, indium-tellur, gallium-tellur, thallium-tellur und antimony-selen”, Scripta Metallurgica, Vol. 5, pp. 583-585, (1971).
    [40] H. Okamoto, “In-Te (indium-tellerium)”, Binary Alloy Phase Diagrams, 2ed, Vol. 3, pp. 2301-2304, (1990).
    [41] H. Okamoto, “Bi-Te (bismuth-tellerium)”, Binary Alloy Phase Diagrams, 2ed, Vol. 1, pp. 800-801, (1990).
    [42] V. I. Veraksa, V. N. Lange, and T. I. Lange. “Effect of small additions of subgroup-V elements on some properties of tellurium monocrystals”, Zhurnal Fizicheskoi Khimii, Vol. 37(10), pp. 2308–2310, (1963).
    [43] G. A. Ivanov and A. R. Regel, “Electric features of the Bi alloys”, Zh. Tekh. Fiz., Vol. 25, pp. 39-48, (1955).
    [44] L.E. Shelimova, O.G. Karpinsky, V.I. Kosyakov, V.A. Shestakov, V.S. Zemskov, F.A. KuznetsovZ. “Homologous series of layered tetradymite-like compounds in Bi-Te and GeTe-Bi2Te3 systems”, J. Struct. Chem., Vol. 41(1), pp. 97-105, (2000).
    [45] J.W.G. Bos, H.W. Zandbergen, M.H. Lee, N.P. Ong, R.J. Cava, “Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n”, Physical Review B, Vol. 75(19), pp. 19523-1-195203-9, (2007).
    [46] R.C. Sharma, T.L. Ngai, Y.A. Chang, “The In-Sb (indium-antimony) system”, Bulletin of alloy phase diagram, Vol. 10(6), pp. 657-664, (1989).
    [47] H. Okamoto, “Bi-Sb (bismuth-antimony)”, Journal of phase equilibria and diffusion, Vol. 33(6), pp. 493-494, (2012).
    [48] G. Ghosh, “The Sb-Te (antimony-tellurium) system”, Journal of phase equilibria, Vol. 15(3), pp. 394-360, (1994).
    [49] G. Ghosh, R.C. Sharma, D. T. Li, Y.A. Chang “The Se-Te (sellenium-tellurium) system”, Journal of phase equilibria, Vol. 15(2), pp. 213-224, (1994).
    [50] Belotskii, D. P., and N. V. Demyanchuk. “Bismuth sesquiselenide-indium sesquiselenide system”, Izv. Akad. NaukSSSR, Neorg. Mater, Vol. 5, pp. 1518-1521, (1969).
    [51] Safarov, M. G., et al. “The Bi2Se3-InSe system”, Russian Journal of Inorganic Chemistry, Vol. 37(2), pp. 228-230, (1992).
    [52] Smith, Mac J., R. J. Knight, and C. W. Spencer. “Properties of Bi2Te3‐Sb2Te3 Alloys”, Journal of Applied Physics, Vol. 33(7), pp. 2186-2190, (1962).
    [53] Deneke, K., and A. Rabenau. "Über die natur der phase In3SbTe2 mit kochsalzstruktur," Zeitschrift für anorganische und allgemeine Chemie, Vol. 333(4‐6), pp. 201-208, (1964).
    [54] Gregory, M. J. "The indium-antimony-tellurium system," Journal of the less common metals, Vol. 16(3), pp. 265-274, (1968).
    [55] Wang, C. P., Liu, X. J., Ohnuma, I., Kainuma, R., & Ishida, K. “Formation of immiscible alloy powders with egg-type microstructure”, Science, Vol. 38(1), pp. 2-9, (2002).
    [56] S S. Canegallo, V. Demeneopoulos, L. P. Bicelli, and G. Serravalle, “Intermetallic compounds formed by electrodeposition of indium on bismuth”, Journal of Alloys and Compounds, Vol. 216, pp. 149-154, (1994).
    [57] H. J. Moore, D. L. Olson and R. Noufi, “Use of the Effective Heat of Formation Model to Determine Phase Formation Sequences of In-Se, Ga-Se, Cu-Se, and Ga-In Multilayer Thin Films”, Journal of Electronic Materials, Vol. 27(12), pp. 1334-1340, (1998).
    [58] K. Lu, M. L. Sui, J. H. Perepezko and B. Lanning, “The kinetics of indium/amorphous-selenium multilayer thin film reactions”, Journal of Materials Research, Vol. 14(3), pp. 771-779, (1999).
    [59] E. Fahrenkrug, J. Rafson, M. Lancaster, S. Maldonado, “Concerted electrodeposition and alloying of antimony on indium electrodes for selective formation of crystalline indium antimonide, Langmuir, (2017).
    [60] D. Besson, M. Treilleux, A. Hoareau, C. Esnouf, “Preparation and characterization of nanometresize InSb particles”, Philosophical Magazine A, Vol. 80(5), pp. 1139-1149, (2000).
    [61] V. M. Kozlov, et al, “Intermetallic compound formed by electrodeposition of indium on antimony”, Journal of Alloys and Compounds, Vol. 259, pp. 234-240, (1997).
    [62] D. L. Kendall, R. A. Huggins, “Self-diffusion in indium antimonide”, Journal of Applied Physics, Vol. 47(7), pp. 2750-2759, (1969).
    [63] S. T. Lu, “Phase equilibria of the Bi-In-Te, Bi-In-Se ternary ternary thermoelectric materials and In/Bi2Te3 interfacial reactions, Master Thesis, National Tsing Hua University, Taiwan, (2016).
    [64] Wu, Hsin-jay, et al. “Reduced thermal conductivity in Pb-alloyed AgSbTe2 thermoelectric materials”, Acta materialia, Vol. 60(17), pp. 6144-6151, (2012).
    [65] Wu, H-J., et al. "Formation of ordered nano-wire microstructures in thermoelectric Pb-Ag-Sb-Te," Acta materialia, 60(3), pp. 1129-1138, (2012).
    [66] S. W. Chen, C.-C. Huang and J.-C. Lin, “The relationship between the peak shape of a DTA curve and the shape of a phase diagram”, Chemical Engineering Science, Vol. 50(3), pp. 417-431, (1995).
    [67] B Boettinger, W. J., Kattner, U. R., Moon, K. W., & Perepezko, J. H, “DTA and heat-flux DSC measurements of alloy melting and freezing,” US Govern. Printing Office, (pp. 960-15). (2006).
    [68] C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, D.S. Jiang, “Effects of limited Cu supply on soldering reactions between SnAgCu and Ni”, J. Electron Mater, Vol. 35(5), pp. 1017-1024, (2006).
    [69] V.P. Zlomanov, M.S. Sheiman, B. Legendre, “Phase diagram and thermodynamic properties of phases in the In-Te system”, J. Phase Equilibria, Vol. 22(3), pp. 339-344, (2001).
    [70] Sung, J. P, at. al. “High-mobility property of crystallized In-Te chalcogenide materials”, Electronic material letters, Vol. 8(2), pp. 175-178, (2012).
    [71] P. Matheswaran, B. Gokul, K. M. Abhirami, R. Sathyamoorthy, “Thickness dependent structural and optical properties of In/Te bilayer thin films”, Materials science in semiconductor processing, Vol. 15, pp. 486-491, (2012).

    QR CODE