| 研究生: |
徐薏帆 Hsu, Yi-Fan. |
|---|---|
| 論文名稱: |
透過排班最佳化降低醫事放射師整體肌肉骨骼不適風險:以新竹市某區域醫院為例 Reducing the Overall Risk of Musculoskeletal Discomforts among Medical Radiation Technologists through Schedule Optimization: A Regional Hospital in Hsinchu City as an Example |
| 指導教授: |
盧俊銘
Lu, Jun-Ming |
| 口試委員: |
張堅琦
Chang, Chien-Chi 林東盈 Lin, Dung-Ying 劉育朋 Liu, Yu-Peng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 主觀累積疲勞 、工作相關肌肉骨骼傷害之風險因子檢核表 、北歐肌肉骨骼傷害問卷(NMQ) 、排班模型 |
| 外文關鍵詞: | subjective cumulative fatigue, Risk Factor Checklist for Work-related Musculoskeletal Disorders, Nordic Musculoskeletal Questionnaire, Scheduling Model |
| 相關次數: | 點閱:177 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫事放射師是在醫療院所中從事輻射相關診療作業的醫事人員,工作時需長時間反覆進行操作儀器、搬移病人或是單手取放X光片匣等作業,常伴隨彎腰、高舉手臂、久站和蹲跪等重複性動作,造成肌肉骨骼不適,但外界對放射師的危害多聚焦於輻射暴露風險,易忽視肌肉骨骼不適之風險分析與改善。因此,本研究以新竹市某區域醫院放射線科為例,旨在建構排班最佳化的模型,在遵從法規限制、醫院內部輪班規定、特殊班別人員技術需求等條件下,降低醫事放射師之整體肌肉骨骼不適風險。
本研究分為五個階段:(1)問卷調查:透過職場疲勞調查問卷調查放射師連續工作多天之累積疲勞程度,藉以將主觀累積疲勞納入風險衡量,進行班表規劃,同時也詢問放射師造成疲勞感受的主觀原因;此外,亦透過北歐肌肉骨骼不適問卷調查放射師目前之肌肉骨骼不適情形,以了解各部位不適感受出現的盛行率;(2)個案醫院現行班次分析:藉由2018年放射線科業務統計資料區分出旺月、淡月及一般時節,以依據業務量排出不同的班表;(3)現場作業風險評估觀察:分別針對一般X光攝影、磁振造影等現場作業進行觀察,並運用工作相關肌肉骨骼傷害之風險因子檢核表,分析作業流程中肌肉骨骼不適危險因子與風險,將風險量化;(4)建立排班模式:綜合問卷調查得出之主觀累積疲勞程度、現場作業觀察得出之各班別客觀肌肉骨骼不適風險,以最小化醫事放射師整體肌肉骨骼不適風險為目標式,並以法令規範、科內輪班規定等為限制式,建立旺月、淡月、一般時節之排班最佳化模型,並使用Gurobi Optimizer 8.1.1版本搭配Python 3.7環境求解、產生班表;(5)專家意見討論:在完成排班求解後,除了分析節省的時間成本、降低之風險,亦向專家諮詢,探討排班最佳化之整體效益與可行性。
研究結果分為三部分:第一部分為問卷調查結果,在造成疲勞感受的主觀原因部分,前三名依序為:「工作量較大」、「輪班工作」、「睡眠不足」與「反覆操作動作」,透過排班最佳化應可改善輪班工作與反覆操作動作造成的疲勞感受,另外肌肉骨骼不適現況盛行率最高的身體部位前三名依序為:下背或腰(66.67%)、手或手腕(46.67%)及肩膀(46.67%);第二部分為現場作業觀察結果,結果顯示電腦斷層攝影、血管攝影等相關班次以及一般X光攝影中,當病患為躺床狀態、攝影部位為身體中段時,因為牽涉到移床作業,肌肉骨骼不適風險最高;第三部分為最佳化排班模式結果,基於主觀累積疲勞程度與各班別肌肉骨骼不適風險分數,求出三種時節的最佳化班表。由於2019新型冠狀病毒疫情的影響,未能將班表即時實行、追蹤醫事放射師的回饋,故透過專家意見討論,探討實施的可行性以及降低醫事放射師之肌肉骨骼不適盛行率的可能效果,結果發現:相較於既有班表,最佳化班表中,放射師在單一週期內輪值較多種班次,應可降低單週內重複輪值同樣班次的肌肉骨骼不適情形。
另外,分析每位放射師之肌肉骨骼不適風險平均分數,在各種時節下,採取最佳化班表時皆比既有班表低,進一步觀察最佳化班表之班次分配與放射師個人主觀疲勞程度的關聯,發現平均每日主觀累積疲勞程度最高的四位放射師被分配到一般X光攝影、乳房攝影等風險較低的班次,而每日主觀累積疲勞程度最低的四位放射師則被分配到電腦斷層攝影、磁振造影等風險較高的班次,代表最佳化班表確實有助於使主觀累積疲勞程度較高的放射師盡可能從事肌肉骨骼不適風險較低的工作。此外,主觀累積疲勞程度與肌肉骨骼不適風險總和之間在既有班表中呈現低度正相關,在最佳化班表中則皆呈現中度負相關,表示主觀累積疲勞程度愈高的放射師愈可能會被分配到肌肉骨骼不適風險較低的班別,應有助於降低其工作肌肉骨骼不適情形。
整體而言,本研究將醫事放射師的主觀累積疲勞、各班別的肌肉骨骼不適風險納入考量,建立最小化整體肌肉骨骼不適風險的排班模型,提供個案醫院在未來實行,將有助於縮短排班所需時間以及降低醫事放射師工作之肌肉骨骼不適風險。
Medical radiation technologists are medical staff engaged in radiation-related operations in hospitals. They need to repeatedly operate instruments, move patients, or hold X-ray cassettes with one hand. Repetitive actions such as bending the torso, raising the arms, twisting the neck, standing for a long time, and squatting are involved and would cause musculoskeletal discomforts. However, the public focuses mainly on the risk of radiation exposure among medical radiation technologists. Risk analysis and improvement of musculoskeletal discomforts are somehow neglected. Therefore, this study takes the radiology department of a regional hospital in Hsinchu City as an example and aims to construct a mathematical model for schedule optimization to reduce the overall risk of musculoskeletal discomforts among medical radiation technologists.
There are five stages in this study: (1) Questionnaire survey: Workplace fatigue questionnaire was used to investigate medical radiation technologists’ cumulative fatigue level in multiple working days. By doing so, subjective cumulative fatigue can be included in risk assessment for schedule optimization. Meanwhile, medical radiation technologists were also asked about the possible causes of fatigue. In addition, the current musculoskeletal discomfort situation among medical radiation technologists was investigated through the Nordic Musculoskeletal Discomfort Questionnaire to understand the prevalence of discomfort in various body parts. (2) The analysis of current shift of the hospital: The represensative months of peak, slack, and general seasons are differentiated according to the nember of patients in the radiology department collected monthly in 2018. (3) On-site observation and risk assessment: Operations of general X-ray photography and magnetic resonance imaging were first observed. After that, the Risk Factor Checklist for Work-related Musculoskeletal Disorders was used to identify and quantify the risk factors. (4) Constructing the scheduling model: By combining the subjective cumulative fatigue level from the questionnaire survey and the risk of musculoskeletal discomfort from on-site observation, the scheduling model was constructed to minimize the overall risk of musculoskeletal discomforts among medical radiation technologists. The constraints include regulatory restrictions and internal shift regulations. The model is solved by Gurobi Optimizer ver. 8.1.1 with Python ver. 3.7 to generate the schedules for peak, slack, and general seasons. (5) Expert review: After solving the scheduling model, the reduction of risk, time and cost saved were analyzed. In addition, experts were consulted to help validate the overall benefits and feasibility of the scheduling model.
The research results are divided into three parts. The first part is the questionnaire survey results. The top three possible causes of fatigue are "heavy workload", "shift work", "lack of sleep" and "repetitive operations." With schedule optimization, the fatigue caused by shift work and repetitive operations might be improved. In addition, the body parts with the highest prevalence of musculoskeletal discomforts are lower back or waist (66.67%), hands or wrists (46.67%), and shoulders (46.67%). The second part is the results of on-site observation and risk assessment. The results showed that in computer tomography, angiography and general X-ray photography, when it is necessary to transfer the immobile patients between the bed and operation table for taking pictures of their middle body, the risk of musculoskeletal discomforts is the highest. The third part is the result of the scheduling model. Based on the subjective cumulative fatigue level and the musculoskeletal discomfort risk scores of each operation, the optimized schedule for the three types of seasons were obtained. Due to the impact of the COVID-19, it is difficult to implement the schedule immediately and get the feedback from the hospital. Therefore, the feasibility of implementation and the possible effect on reducing the prevalence of musculoskeletal discomforts among the technologists were discussed with experts of the hospital. The results showed that the optimized schedules help assign the technologists to multiple operations in a week, which might reduce the musculoskeletal discomforts caused by repeating the work of the same operation in a week.
Moreover, after analyzing the average musculoskeletal discomfort risk scores of each technologist, the results showed that the scores of adopting the optimized schedules are lower than the score of adopting the original schedule. Furthermore, the four technologists with the highest average cumulative fatigue level are re-assigned to the operations with lower risks such as general X-ray photography and mammography, while the four technologists with the lowest average cumulative fatigue level are re-assigned to higher-risk operations such as computer tomography and magnetic resonance imaging. This indicates that the optimizad schedules do help technologists with a higher level of subjective cumulative fatigue reduce the risk by assigning them to the operations with lower risk of musculoskeletal discomforts. Besides, the subjective cumulative fatigue level and the risk of musculoskeletal discomforts were lowly positively correlated in the original schedule but are moderately negatively correlated in the optimized schedules. It indicates that the higher the subjective cumulative fatigue, the more likely that the technologist would be assigned to operations with the lower risk of musculoskeletal discomforts.
Overall, this study took the subjective cumulative fatigue of medical radiation technologists and the risk of musculoskeletal discomforts of each operation into account, and constructed a scheduling model that minimizes the overall risk of musculoskeletal discomforts for the implementation in the hospital. With the scheduling model, the time required for scheduling can be shorter, and the overall risk of musculoskeletal discomforts among medical radiation technologists can be reduced.
中文文獻
1. 文意泱(2012年7月20日)。我們這一行/病房書記不簡單。聯合電子報。取自https://paper.udn.com/udnpaper/PIC0005/220250/web/index.html
2. 王肇齡、黃志中、楊俊毓、莊弘毅(2000)。個人疲勞強度問卷中文版之效度及信度的評估。台灣家庭醫學雜誌,10(4),頁192-201。
3. 全中妤 & 宋鴻樟(2005)。上肢快速檢核表評估盒餐業肌肉骨骼傷病之危害因子。台灣公共衛生雜誌,24(1),頁84-91.
4. 行政院勞委會勞工安全衛生研究所(2008)。輪班作業危害預防手冊。取自https://www.ilosh.gov.tw/menu/1223/1235/1237/%E8%BC%AA%E7%8F%AD%E4%BD%9C%E6%A5%AD%E5%8D%B1%E5%AE%B3%E9%A0%90%E9%98%B2%E6%89%8B%E5%86%8A/
5. 行政院勞委會勞工安全衛生研究所(2008)。人因工程肌肉骨骼傷害預防指引。臺北市:行政院勞委會勞工安全衛生研究所。
6. 張載福、陳鈞強、楊致蓉、張幸、鮑勝橋、李群(2007)。監獄民警作業疲勞症狀的影響因素分析。中國行為醫學科學,16(12),頁1105-1107.
7. 李典勳(2011)。探討醫院急診X光檢查流程與放射師人力配置改善方案。中原大學工業與系統工程研究所碩士論文,桃園縣。
8. 李英碩(2007)。客服中心人員排班問題之整數規劃。國立清華大學工業工程與工程管理學系碩士論文,新竹市。
9. 吳威霆(2010)。具值班暨休假公平性的護理師排班問題及其遺傳演算求解法。臺灣大學工業工程學研究所碩士論文,台北市。
10. 林木泉、吳鏘亮、陳俊賢、李仁傑、陳福士(2009)。醫院從業人員工作特質與疲勞關係之探討。醫務管理期刊,10(2),頁93-110。
11. 林孟超(2011)。南投縣基層公共衛生人員之職場疲勞評估研究。中臺科技大學健康產業管理研究所碩士論文,臺中市。
12. 林怡均(2016)。醫師滿意度與醫院利潤於分區排班之研究。屏東科技大學工業管理系所學位論文,屏東縣。
13. 林美華(2016)。某醫院護理人員肌肉骨骼傷害及其危害原因研究。中山醫學大學職業安全衛生學系碩士班碩士論文,臺中市。
14. 林英傑(2013)。利用模糊理論和層級分析法解排班問題。中原大學工業與系統工程研究所碩士論文,桃園縣。
15. 林惠琴、甘芝萁(2014年12月29日)。醫院鑽漏洞 血汗護士變相上演。自由時報。取自https://news.ltn.com.tw/news/life/paper/842802
16. 林詩芹、韓復華(2003)。以限制規劃構建全年無休服務人員排班模式─以客服人員排班為例。國立交通大學運輸科技與管理學系碩士論文,新竹市。
17. 林邏耀(2008)。高雄港貨櫃起重機司機員排班作業之研究。國立交通大學交通運輸研究所碩士論文,新竹市。
18. 洪于茜(2018)。工作壓力、工作家庭衝突及睡眠狀態與不同向度工作疲勞的關聯探討。國立政治大學心理學系碩士論文,台北市。
19. 徐莉莉(2013)。教學醫院急診部門之規劃與設計研究。中國科技大學建築驗究所碩士論文,臺北市。
20. 唐國智(2002)。開刀房人因工程危害評估與改善設計。高雄醫學大學公共衛生學研究所碩士論文,高雄市。
21. 翁瑜婷(2011)。某公立醫院員工職場疲勞評估研究。中臺科技大學健康產業管理研究所碩士論文,臺中市。
22. 張靜慧(2015年8月)。逆時鐘有解!輪班工作者也能元氣滿滿。康健雜誌,201。取自https://www.commonhealth.com.tw/article/article.action?nid=70433
23. 梁豔(2010)。醫護人員作業疲勞現況調查及相關影響因素分析。大連醫科大學碩士論文,大連市。
24. 勞動部職業安全衛生署(2014)。異常工作負荷促發疾病預防指引─第一版。勞動部職業安全衛生署出版。
25. 許保惠(2007)。臺灣北區醫事放射師工作壓力、工作倦怠相關之研究─以社會支持為調節變項。中國文化大學心理輔導研究所碩士論文,台北市。
26. 陳玟玲、周思源、袁素娟、郭憲華、楊日昇、郭憲文(2006)。影響醫院護理人員自覺肌肉骨骼疼痛症狀之相關因素。中臺灣醫學科學雜誌,11(4),252-260。
27. 陳宥竹(2016)。醫事放射師肌肉骨骼不適之分析與改善。國立清華大學工業工程與工程管理學系碩士論文,新竹市。
28. 陳昶智(2016)。重複性作業對人體肌肉骨骼傷害的影響─以某化工廠生產作業為例。中原大學工業與系統工程研究所碩士論文,桃園縣。
29. 陳秋蓉、鄭雅文、胡佩怡(2004)。國內勞工工作相關過勞與心理社會因子之認知調查。行政院勞工委員會勞工安全衛生研究所出版。
30. 陳韋丞(2016)。以肌電圖評估救護人員執行病患搬運時的上肢肌肉負荷。成功大學工業與資訊管理學系碩士論文,臺南市。
31. 陳琳燕(2006)。近接放射治療病患搬運與治療床設計之研究。中臺科技大學醫學影像暨放射科學系學士論文,臺中市。
32. 傅建騏。餐飲業不同托盤端舉方式之人因工程分析。碩士論文,中原大學工業與系統工程研究所,2016。
33. 傅柏翔(2010)。醫院病歷室工作人員肌肉骨骼不適之評估─以南部某教學醫院為例。高雄醫學大學職業安全衛生研究所碩士論文,高雄市。
34. 勞動基準法(2015年6月3日)。
35. 勞動基準法(2018年1月10日)。
36. 勞動部。勞動基準法第34 條修法說帖(2017)。取自https://www.mol.gov.tw/media/5758441/1061221-%E5%8B%9E%E5%8B%95
%E5%9F%BA%E6%BA%96%E6%B3%95%E7%AC%AC34%E6%A2%9D%E4%BF%AE%E6%B3%95%E8%AA%AA%E5%B8%96.pdf
37. 勞動部勞工保險局(2018)。勞工保險職業病傷病給付人次–按職業病成因、性別及行業別分【原始數據】。未出版之統計數據。取自https://www.bli.gov.tw/0019152.html
38. 辜士銘(2011)。探討職能別限制下之人員排班問題。國立高雄應用科技大學企業管理系碩士在職專班碩士論文,高雄市。
39. 黃文奇(2013年4月27日)。搶手證照/放射師 要有臨床經驗。udn文教職考。取自http://radiationlife.blogspot.com/2013/05/udn.html
40. 黃啓煌、徐雅媛(2013)。職場作業勞工勞動疲勞檢測及運動介入相關性研究。行政院勞工委員會勞工安全衛生研究所研究成果報告(編號:IOSH101-M318),臺北市:行政院勞委會勞工安全衛生研究所。
41. 葉婉榆、鄭雅文、陳美如、邱文祥(2008)。職場疲勞狀況與工作過度投入之相關因素─以台北市36家職場受雇員工為例。台灣衛誌,27(6),頁463-477。
42. 葉爾煒(2004)。某安養機構照顧者肌肉骨骼傷害之調查。高雄醫學大學職業安全衛生研究所碩士論文,高雄市。
43. 蔡雅萍(2016)。整數規劃法於跨院區醫師排班之應用。屏東科技大學工業管理系碩士論文,屏東縣。
44. 蔡宛娟、蔡少雲、謝蕙宜、李怡旻、陳小蓮(2017)。降低手術室人員肌肉骨骼傷害風險程度。領導護理,18(4),頁85-100。
45. 蔡宇哲(2015)。逆時鐘有解!輪班工作者也能元氣滿滿【線上論壇】。取自https://info.todohealth.com/10865850
46. 鄭任斌(2006)。藥事工作站人因危害分析與規劃設計。高雄醫學大學職業安全衛生研究所碩士班碩士論文,高雄市。
47. 職業安全衛生法(2013年7月3日)。
48. 醫事放射師法(2019年4月10日)。
外文文獻
1. Abboud, N., Inuiguchi, M., Sakawa, M., and Uemura, Y. (1998). Manpower allocation using genetic annealing. European Journal of Operational Research, 111(2), pp. 405-420.
2. Beasley, J.E. and Cao, B. (1996). A tree search algorithm for the crew scheduling problem. European Journal of Operational Research, 94(3), pp. 517-526.
3. Beaulieu, H., Ferland, J.A., Gendron, B., and Michelon, P. (2000). A mathematical programming approach for scheduling physicians in the emergency room. Health Care Management Science, 3(3), pp. 193-200.
4. Borg, G. (1985). An introduction to Borg's RPE-scale. Mouvement Publications.
5. Brailsford, S.C., Potts C.N. and Smith B.M. (1999). Constraint Satisfaction Problems: Algorithms and Applications, European Journal of Operational Research, 119, pp. 557-581.
6. Cai, X. and Li, K.N. (2000). A genetic algorithm for scheduling staff of mixed skills under multi-criteria. European Journal of Operational Research, 125(2), pp. 359-369.
7. Choi, W.J., Sung, N.J., Kang, Y.J., and Han, S.H. (2008). Validity of NIOSH-and Nordic-style questionnaires in the screening and surveillance of neck and upper extremity work-related musculoskeletal disorders. Korean Journal of Occupational and Environmental Medicine, 20(3), pp. 205-214.
8. Chun, A.H.W., Chan, S.H.C., Lam, G.P.S., Tsang, F. M. F., Wong, J., and Yeung, D. W. M. (2000). Nurse rostering at the hospital authority of Hong Kong. AAAI/IAAI, 2000, pp. 951-956.
9. Dantzig, G.B. (1954). Letter to the editor - A comment on Edie's “Traffic delays at toll booths”. Journal of the Operations Research Society of America, 2(3), pp.339-341.
10. Darmoni, S.J., Fajner, A., N. Mahé, Leforestier, A., Vondracek, M., Stelian, O., and Baldenweck, M. (1995). Horoplan: Computer-Assisted Nurse Scheduling Using Constraint Based Programming, Journal ofthe Society for Health Systems, Vol. 5, No. 1, pp. 41-54.
11. Day, M.L., McGuigan, M.R., Brice, G., and Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. The Journal of Strength & Conditioning Research, 18(2), pp. 353-358.
12. Eitzen , G. and Panton, D. (2004), “Multi-Skilled Workforce Optimisation”, Annals of Operations Research, Vol.127, pp. 359-372
13. Engels, J.A., Landeweerd, J.A., and Kant, Y. (1994). An OWAS-based analysis of nurses' working postures. Ergonomics, 37(5), pp. 909-919.
14. Fountain, L.J. (2003). Examining RULA’s postural scoring system with selected physiological and psychophysiological measures. International Journal of Occupational Safety and Ergonomics, 9(4), pp. 383-392.
15. Freudenberger, H.J. (1974). Staff Burnout. Journal of Social Issues, 30(1), pp. 159-165.
16. Garg A. (1999). Long-term effectiveness of “zero-lift program” inseven nursing homes and one hospital. Cincinnati, OH: National Institute for Occupational Safety and Health.
17. Gawron, V. J., French, J., and Funke, D. (2001). An overview of fatigue. In P. A. Hancock & P. A. Desmond (eds.), Human factors in transportation. Stress, workload, and fatigue, pp. 581-595.
18. Hignett, S. and McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied ergonomics, 31(2), pp. 201-205.
19. Huibers, M.J., Kant, I.J., Knottnerus, J.A., Bleijenberg, G., Swaen, G.M., and Kasl, S.V. (2004). Development of the chronic fatigue syndrome in severely fatigued employees: predictors of outcome in the Maastricht cohort study. Journal of Epidemiology & Community Health, 58(10), pp. 877-882.
20. Human Ergology Society and International Ergonomics Association (2017). Ergonomic Checkpoints in Human Care Work. Retrieved from https://www.iea.cc/upload/Ergonomic%20Checkpoints%20in%20Health%20Care%20Work.pdf
21. Humantech Inc., (1993). “Applied Ergonomic Training Manual,” South Padre Island Texas.
22. Jahanimoghadam, F., Horri, A., Hasheminejad, N., Nejad, N. H., and Baneshi, M. R. (2018). Ergonomic Evaluation of Dental Professionals as Determined by Rapid Entire Body Assessment Method in 2014. Journal of Dentistry, 19(2), pp. 155.
23. Júnior, M., Gonçalves, E., Trombini-Souza, F., Maduro, P. A., Mesquita, F. O. S., and Silva, T. F. A. D. (2019). Self-reported musculoskeletal disorders by the nursing team in a university hospital. BrJP, 2(2), pp. 155-158.
24. Karhu, O., Harkonen, R., Sorvali, P., and Vepsalainen, P., 1981, Observing working postures in industry: examples of OWAS applications, Applied Ergonomics, 12(1), pp. 13-17.
25. Kim, T. and Roh, H. (2014). Analysis of risk factors for work-related musculoskeletal disorders in radiological technologists. Journal of physical therapy science, 26(9), pp. 1423-1428.
26. Knudsen, M.L., Ludewig, P.M., and Braman, J.P. (2014). Musculoskeletal pain in resident orthopaedic surgeons: results of a novel survey. The Iowa orthopaedic journal, 34, pp. 190.
27. Kristensen, T.S., Borritz, M., Villadsen, E., and Christensen, K.B. (2005). The Copenhagen Burnout Inventory: A new tool for the assessment of burnout. Work & Stress, 19(3), pp. 192-207.
28. Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., Biering-Sørensen, F., Andersson, G., and Jørgensen, K. (1987). Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Applied ergonomics, 18(3), pp. 233-237.
29. Leone, S.S., Huibers, M.J., Knottnerus, J.A., and Kant, I. J. (2007). Similarities, overlap and differences between burnout and prolonged fatigue in the working population. QJM: An international journal of medicine, 100(10), pp. 617-627.
30. Maslach, C. and Jackson, S.E. (1982). After-effects of job-related stress: families as victims. Journal of Occupational Behavior, 3(1), pp. 63-77.
31. McAtamney, L. and Corlett, E.N. (1993). RULA: a survey method for the investigation of work-related upper limb disorders. Applied ergonomics, 24(2), pp. 91-99.
32. Milfont, T.L., Denny, S., Ameratunga, S., Robinson, E., and Merry, S. (2008). Burnout and wellbeing: Testing the Copenhagen burnout inventory in New Zealand teachers. Social indicators research, 89(1), pp. 169-177.
33. Morris, J.G. and Showalter, M.J. (1983). Simple approaches to shift, days-off and tour scheduling problems. Management Science, 29(8), pp. 942-950.
34. Moussavi-Najarkola, S.A. and Mirzaei, R. (2012). Assessment of musculoskeletal loads of electric factory workers by rapid entire body assessment. Health Scope, 1(2), pp. 71-79.
35. Permatasari, C.I., Sutopo, W., and Hisjam, M. (2019). Aircraft maintenance manpower shift planning with multiple aircraft maintenance licenced. In IOP Conference Series: Materials Science and Engineering (Vol. 495, No. 1, p. 012023). IOP Publishing.
36. Person, J.G., Hodgson, A.J., and Nagy, A. G. (2001). Automated high-frequency posture sampling for ergonomic assessment of laparoscopic surgery. Surgical endoscopy, 15(9), pp. 997-1003.
37. Rushmeier, R.A., Hoffman, K. L., and Padberg, M. (1995). Recent advances in exact optimization of airline scheduling problems. Dept. of Operations Research and Operations Engineering, George Mason University, Working Paper.
38. Schneider, S. (1995). Ergonomics: OSHA's Draft Standard for Prevention of Work-Related Musculoskeletal Disorders Applied Occupational and Environmental Hygiene, 10(8), pp. 665-674.
39. Shen, Y., Li, J. and Peng, K. (2017). An estimation of distribution algorithm for public transport driver scheduling. International Journal of Operational Research, 28(2), pp. 245-262.
40. Trinkoff, A.M., Le, R., Geiger-Brown, J., and Lipscomb, J. (2006). Longitudinal Relationship of work hours, mandatory overtime, and on-call to musculoskeletal problems in nurses. American Journal of Industrial Medicine, (49), pp. 964-971.
41. Tóth, A. and Krész, M. (2013). An efficient solution approach for real-world driver scheduling problems in urban bus transportation. Central European Journal of Operations Research, 21(1), pp. 75-94.
42. Vercoulen, J.H. (1999). The checklist individual strength. Gedragstherapie, 32, pp. 131-136.
43. Wang, S., Wang, X. and Takagi, H. (2006). User fatigue reduction by an absolute rating data-trained predictor in IEC. In 2006 IEEE International Conference on Evolutionary Computation, IEEE, pp. 2195-2200.
44. Worm-Smeitink, M., Gielissen, M., Bloot, L., Van Laarhoven, H.W.M., Van Engelen, B.G.M., Van Riel, P. Van Riel, G. Bleijenberg, S. Nikolaus and Knoop, H. (2017). The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength. Journal of psychosomatic research, 98, pp. 40-46.
45. Yang, T.H., Yan, S., and Chen, H.H. (2003). An airline maintenance manpower planning model with flexible strategies. Journal of Air Transport Management, 9(4), pp.233-239.
46. Yoo, J.I. and Koo, J.W. (2004). Musculoskeletal symptoms and related factors for nurses and radiological technologists wearing a lead apron for radiation protection. Korean Journal of Occupational and Environmental Medicine, 16(2), pp. 166-177.
47. Zuo, X., Chen, C., Tan, W., and Zhou, M. (2014). Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm. IEEE Transactions on intelligent transportation systems, 16(2), pp. 1030-1041.
48. 酒井一博(2002)日本産業衛生学会産業疲労研究会撰 「自覚症しらべ」 の改訂作業2002(特別企画:日本産業衛生学会産業疲労研究会撰・新版 「自覚症しらべ」)労働の科学,57(5),頁295-298。
全文公開日期 本全文未授權公開 (校內網路)