研究生: |
吳重毅 Wu, Chung Yi |
---|---|
論文名稱: |
製備高度水分散性TiO2奈米粒子以提升有機染料的可見光光催化降解研究 Preparation of Highly Water-Dispersible TiO2 Nanoparticles for Visible-Light Photocatalytic Degradation of Organic Dyes |
指導教授: |
吳劍侯
Wu, Chien Hou |
口試委員: |
董瑞安
黃國柱 王竹方 張淑閔 鄧金培 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
論文頁數: | 168 |
中文關鍵詞: | 二氧化鈦 、分散性 、染料敏化 、鐵離子 、活性氧化物種 |
外文關鍵詞: | TiO2, Dispersion, Dye photosensitization, ferric ions, Reactive oxygen species |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光觸媒技術是指利用光的能量照射在固體材料上,此材料可將光能轉換成化學能,促使有機物污染物的分解或合成,進而達到除污、除臭、工業合成等目的。在眾多的光觸媒材料中,TiO2有相當優良的光觸媒活性,而且有物理與化學性質穩定,耐酸鹼、價格便宜、容易製備、無毒等優點,所以成為最具發展潛力的光觸媒材料。雖然TiO2已廣泛地應用於染料敏化太陽能電池及水體污染物降解等能源及環境領域,但TiO2觸媒存在易聚集、難以回收、能隙大等缺點而限制了該材料的應用性。本論文以製備高度水分散性TiO2奈米粒子為主軸,研究內容主要分成三大部分,第一部分探討鹼性過氧化氫(alkaline hydrogen peroxide, AHP)處理市售TiO2粉末(AHP-TiO2)之製備流程條件。利用熱重分析儀(TGA)、電子能譜儀(XPS)、傅立葉轉換紅外線光譜儀(FT-IR)等儀器分析AHP-TiO2表面變異,結果顯示AHP-TiO2表面的氫氧官能基總量比未修飾TiO2增加了2.6倍。從穿透式電子顯微鏡(TEM)、動態光散射儀(DLS)及原子力顯微鏡(AFM)觀察到AHP-TiO2的形狀與粒徑均一,能有效地分散於極性溶液中減少聚集。第二部分則是將AHP-TiO2應用於染料光敏化系統,並探討過渡金屬離子的影響。因AHP-TiO2的分散性高,能有效地利用可見光能量,使得染料污染物的降解速率明顯提升。在此系統中加入不同的金屬離子(Fe3+、Cu2+、Zn2+以及Al3+)測試,結果發現Fe3+離子能與表面的氫氧官能基錯合,當染料經可見光激發出的電子會轉移到此錯合物而釋放出額外的活性氧化物種(reactive oxygen species, ROS)以提升染料降解速率,此反應速率與市售二氧化鈦(Degussa P25)相比高出一個數量級。活性氧化物種包含超氧離子(superoxide anion)、單一態氧(singlet oxygen)、氫氧自由基(hydroxyl radical),為了探討此系統的活性氧化物種,第三部分研究主題為甲醇氧化(methanol oxidation)及香豆素衍生法(coumarin derivation)偵測系統中產生的氫氧自由基。結果顯示AHP-TiO2-Fe3+光敏化系統裡,主要是產生氫氧自由基,經由此兩種方法捕捉氫氧自由基能力的不同,推測出此系統所產生的氫氧自由基主要來自於AHP-TiO2-Fe3+表面。
關鍵字: 二氧化鈦(TiO2)、分散性、染料敏化、鐵離子、活性氧化物種
Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO2 powder for water-dispersibility and visible-light photocatalytic activity on the degradation of organic dyes. The performance of treated TiO2 (AHP-TiO2) was evaluated as a function of NaOH concentration, H2O2 concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H2O2 and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and ultraviolet-visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of AHP-TiO2 was dramatically changed. AHP-TiO2 could be highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in acidic water without any stabilizing ligand. It could also significantly enhance the visible-light photodegradation of dye pollutants. The superior performance was attributed to the formation of abundant surface hydroxyl groups, estimated to 12.0 OH/nm2. Effect of Fe3+ ion on the photocatalytic activity of the treated TiO2 was studied. The results show that Fe3+ accelerated the photodegradation of dyes in aqueous AHP-TiO2 dispersions with one order of magnitude larger than that of commercial P-25. This may be ascribed to the complexation of the surface hydroxyl groups of AHP-TiO2 with Fe3+ to form Fe(OH)2+. A plausible reaction mechanism for this system was proposed. The apparent quantum efficiency of hydroxyl radical formation was calculated for different TiO2 suspensions by methanol oxidation and coumarin derivatization. The experimental observations suggest that Fe3+ ion could accelerate the generation rate of hydroxyl radical species in AHP-TiO2 and the system oxidation should be caused by adsorbed hydroxyl radical species, rather than free hydroxyl radical species under visible light irradiation.
Keywords: TiO2, Dispersion, Dye photosensitization, ferric ions, Reactive oxygen species
Ai, Z., Wu, N., Zhang, L. 2014 A nonaqueous sol–gel route to highly water dispersible TiO2nanocrystals with superior photocatalytic performance. Catal. Today 224, 180–187.
Ates, M., Daniels, J., Arslan, Z., Farah, I.O. 2013 Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ. Monit. Assess. 185, 3339–3348.
Baalousha, M., Ju-Nam, Y., Cole, P.A., Gaiser, B., Fernandes, T.F., Hriljac, J.A., Jepson, M.A., Stone, V., Tyler, C.R., Lead, J.R. 2012 Characterization of cerium oxide nanoparticles-Part 1: Size measurements. Environ. Toxicol. Chem. 31(5), 983–993.
Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D. 2011 Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16–30.
Bavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C. 2004 The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14(22), 3370–3377.
Caruso, R.A., Antonietti, M., Giersig, M., Hentze, H.P., Jia, J.G. 2001 Modification of TiO2 network structures using a polymer gel coating technique. Chem. Mat. 13(3), 1114–1123.
Chen, X., Li, C., Gra¨tzel, M., Kosteckid, R., Maoe, S.S. 2012a Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937.
Chen, Y., Huang, Y.,Li, K. 2012b Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes. J. Environ. Anal. Toxicol. 2, 1–5.
Cheng, L., Wang, C., Feng, L., Yang, K., Liu, Z. 2014 Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939.
Di Paola, A., Bellardita, M., Palmisano, L., Barbierikova, Z., Brezova, V. 2014 Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J. Photochem. Photobiol., A 273, 59–67.
Dong, H.R., Zeng, G.M., Tang, L., Fan, C.Z., Zhang, C., He, X.X., He, Y. 2015 An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research 79, 128–146.
Erdem, B., Hunsicker, R.A., Simmons, G.W., Sudol, E.D., Dimonie, V.L., El-Aasser, M.S. 2001 XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9), 2664–2669.
Farrokhpay, S., Morris, G.E., Fornasiero, D., Self, P. 2005 Influence of polymer functional group architecture on titania pigment dispersion. Colloids and Surfaces A: Physicochem. Eng. Aspects 253(1-3), 183–191.
Gajovic, A., Stubicar, M., Ivanda, M., Furic, K. 2001 Raman spectroscopy of ball-milled TiO2. J. Mol. Struct. 563, 315–320.
García-García, S., Jonsson, M., Wold, S. 2006 Temperature effect on the stability of bentonite colloids in water. J. Colloid Interface Sci. 298, 694–705.
Guo, J., Cai, X., Li, Y., Zhai, R., Zhou, S., Na, P. 2013 The preparation and characterization of a three-dimensional titanium dioxide nanostructure with high surface hydroxyl group density and high performance in water treatment. Chem. Eng. J. 221, 342–352.
Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., Li, Q. 2015 In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano. Res. 8, 1199–1209.
Hotze, E.M., Phenrat, T., Lowry, G.V. 2010 Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909–1924.
Hubbe, M.A., Rojas, O.R. 2008 Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: A review. BioResources 3, 1419–1491.
Jassby, D., Budarz, J.F., Wiesner, M. 2012 Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 46(13), 6934–6941.
Jing, J., Feng, J., Li, W., Yu, W.W. 2013 Low-temperature synthesis of water-dispersible anatase titanium dioxide nanoparticles for photocatalysis. J. Colloid Interface Sci. 396, 90–94.
Kasuga, T., Kondo, H., Nogami, M. 2002 Apatite formation on TiO2 in simulated body fluid. J. Cryst. Growth 235, 235–240.
Keller, A.A., Wang, H.T., Zhou, D.X., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z.X. 2010 Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44(6), 1962–1967.
Khalid, N.R., Ahmed, E., Hong, Z., Sana, L., Ahmed, M. 2013 Enhanced photocatalytic activity of grapheneeTiO2 composite under visible light irradiation. Curr. Appl. Phys. 13, 659–663.
Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S. 2012 A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109.
Kim, J.H.,Lee, H.I. 2004 Effect of surface hydroxyl groups of pure TiO2 and modified TiO2 on the photocatalytic oxidation of aqueous cyanide. Korean J. Chem. Eng. 21, 116–122.
Kinyanjui, J.M., Hatchett, D.W., Smith, J.A., Josowicz, M. 2004 Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chem. Mat. 16(17), 3390–3398.
Kitano, M., Nakajima, K., Kondo, J.N., Hayashi, S., Hara, M. 2010 Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132(19), 6622–6623.
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R. 2008 Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851.
Lee, C.H., Park, H.B., Park, C.H., Lee, S.Y., Kim, J.Y., McGrath, J.E., Lee, Y.M. 2010 Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion. J. Power Sources 195(5), 1325–1332.
Li, G., Li, L., Boerio-Goates, J., Woodfield, B.F. 2005 High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127(24), 8659–8666.
Liu, N., Chen, X., Zhang, J., Schwank, J.W. 2014 A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51.
Liu, P., Duan, W., Liang, W., Li, X. 2009 Thermokinetic studies of the groups on TiO2 surface. Surf. Interface Anal. 41, 394–398.
Mahl, D., Diendorf, J., Meyer-Zaika, W., Epple, M. 2011 Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 377(1-3), 386–392.
Mishra, A.S., Misra, A.K., Tripathi, M.K., Santra, A., Prasad, R., Jakhmola, R.C. 2004 Effect of sodium hydroxide plus hydrogen peroxide treated mustard (Brassica campestris) straw based diets on rumen degradation kinetics (In sacco), fermentation pattern and nutrient utilization in sheep. Asian-Aust. J. Anim. Sci. 17(3), 355–365.
Missana, T., Adell, A. 2000 On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface Sci. 230, 150–156.
Mudunkotuwa, I.A.,Grassian, V.H. 2010 Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: Surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J. Am. Chem. Soc. 132, 14986–14994.
Mueller, R., Kammler, H.K., Wegner, K., Pratsinis, S.E. 2003 OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19, 160–165.
Nie, L.H., Yu, J.G., Li, X.Y., Cheng, B., Liu, G., Jaroniec, M. 2013 Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 47(6), 2777–2783.
Nosaka, A.Y., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y. 2004 Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. . J. Phys. Chem. B 108, 9121–9125.
Nosaka, A.Y., Nishino, J., Fujiwara, T., Ikegami, T., Yagi, H., Akutsu, H., Nosaka, Y. 2006 Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. J. Phys. Chem. B 110(16), 8380–8385.
Nosaka, A.Y., Nosaka, Y. 2005 Characteristics of water adsorbed on TiO2 photocatalytic surfaces as studied by 1HNMR spectroscopy. Bull. Chem. Soc. Jpn. 78, 1595–1607.
Ocando, C., Tercjak, A., Mondragon, I. 2011 Surfactant addition effects on dispersion and microdomain orientation in SBS triblock copolymer/alumina nanoparticle composites. Eur. Polym. J. 47, 1240–1249.
Pan, L., Zou, J.J., Zhang, X., Wang, L. 2011 Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 133(26), 10000–10002.
Paola, A.D., Bellardita, M., Palmisano, L., Barbieriková, Z., Brezová, V. 2014 Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J. Photochem. Photobiol., A 273, 59–67.
Peiro, A.M., Peral, J., Domingo, C., Domenech, X., Ayllon, J.A. 2001 Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem. Mater. 13, 2567–2573.
Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N. 2010 Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549.
Qin, Y., Sun, L., Li, X., Cao, Q., Wang, H., Tang, X.,Ye, L. 2011 Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: effect of loading mode on therapeutic efficacy. J. Mater. Chem 21, 18003-18010.
Ren, J., Wang, W.M., Lu, S.C., Shen, J.,Tang, F.Q. 2003 Characteristics of dispersion behavior of fine particles in different liquid media. Powder Technol. 137(1-2), 91–94.
Sehgal, A., Lalatonne, Y., Berret, J.F., Morvan, M. 2005 Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21(20), 9359–9364.
Sen, S., Ram, M.L., Roy, S., Sarkar, B.K. 1999 The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res. 14, 841–848.
Shankar, M.V., Kako, T., Wang, D.,Ye, J. 2009 One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution. J. Colloid Interface Sci. 331, 132–137.
Sherman, R.L., Ford, W.T. 2005 Semiconductor nanoparticle/polystyrene latex composite materials. Langmuir 21(11), 5218–5222.
Smith, A.M., Mohs, A.M., Nie, S. 2009 Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63.
Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M.R., Bottero, J.Y. 2010 Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 44, 4897–4902.
Song, S., Jing, L., Li, S., Fu, H., Luan, Y. 2008 Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Mater. Lett. 62, 3503–3505.
Soria, J., Sanz, J., Sobrados, I., Coronado, J.M., Maira, A.J., Hernandez-Alonso, M.D., Fresno, F. 2007 FTIR and NMR study of the adsorbed water on nanocrystalline Anatase. J. Phys. Chem. C 111, 10590–10596.
Sun, J., Guo, L.H., Zhang, H., Zhao, L. 2014 UV irradiation induced transformation of TiO2 nanoparticles in water: Aggregation and photoreactivity. Environ. Sci. Technol. 48, 11962–11968.
Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P. 2011 Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 6, 1–8.
Suzuki, T.S., Sakka, Y., Nakano, K., Hiraga, K. 2001 Effect of ultrasonication on the microstructure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing. J. Am. Ceram. Soc. 84(9), 2132–2134.
Thompson, T.L., Yates, J.T. 2006 Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106(10), 4428–4453.
Tian, F., Wu, Z., Tong, Y., Wu, Z., Cravotto, G. 2015 Microwave-assisted synthesis of carbon-based (n, fe)-codoped TiO2 for the photocatalytic degradation of formaldehyde. Nanoscale Res. Lett. 10, 1–12.
Tiwari, J.N., Tiwari, R.N., Kim, K.S. 2012 Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57, 724–803.
Viala, P., Bourgeat-Lamy, E., Guyot, A., Legrand, P., Lefebvre, D. 2002 Pigment encapsulation by emulsion polymerisation, redespersible in water. Macromol. Symp. 187, 651–661.
Wang, J., Liu, X., Li, R., Qiao, P., Xiao, L., Fan, J. 2012 TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catal. Commun. 19, 96–99.
Wang, J.Y., Liu, Z.H., Cai, R.X. 2008 A new role for Fe3+ in TiO2 hydrosol: Accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 42, 5759–5764.
Wang, P., Wang, D., Li, H., Xie, T., Wang, H., Do, Z. 2007 A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals. J. Colloid Interface Sci. 314(1), 337–340.
Wang, Y., Duo, F., Peng, S., Jia, F., Fan, C. 2014 Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility. J. Colloid Interface Sci. 430, 31–39.
Yang, Q.Z., Troczynski, T. 1999 Dispersion of alumina and silicon carbide powders in alumina sol. J. Am. Ceram. Soc. 82(7), 1928–1930.
Yao, X.M., Tan, S.H., Huang, Z.R., Jiang, D.L. 2005 Dispersion of talc particles in a silica sol. Mater.Lett. 59(1), 100–104.
Yin, B., Hakkarainen, M. 2011 Core-shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J. Mater. Chem. 21, 8670–8677.
Yu, J., Yu, J.C., Hoa, W., Jianga, Z. 2002 Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J. Chem 26, 607–613.
Yu, J.R., Grossiord, N., Koning, C.E., Loos, J. 2007 Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3), 618-623.
Zhang, W. 2014 Naonoparticle Aggregation: Principles and modeling.
Zhao, D., Chen, C., Wang, Y., Ji, H., Ma, W., Zang, L., Zhao, J. 2008 Surface modification of TiO2 by phosphate: Effect on photocatalytic activity and mechanism implication. J. Phys. Chem. C 112(15), 5993–6001.
Zou, H., Lin, Y.S. 2004 Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Applied Catalysis a-General 265(1), 35–42.
Zukerman, R., Vradman, L., Titelman, L., Zeiri, L., Perkas, N., Gedanken, A., Landau, M.V., Herskowitz, M. 2010 Effect of SBA-15 microporosity on the inserted TiO2 crystal size determined by Raman spectroscopy. Mater. Chem. Phys. 122, 53–59.