研究生: |
韓政憲 Han, Cheng-Hsien |
---|---|
論文名稱: |
人工標記註解介面設計在第二外語閱讀輔助之效果評估 Evaluating the Effects of Interface Designs with Human-Generated Annotation Support for Second Language Reading |
指導教授: |
王浩全
Wang, Hao-Chuan |
口試委員: |
朱宏國
Chu, Hung-Kuo 曾元琦 Tseng, Yuan-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 第二外語閱讀輔助 、人工註記 、群眾外包 、圖像筆記 、區域標註註記 |
外文關鍵詞: | second language reading support, human-generated annotations, crowdsourcing, picture note-taking, region-of-interest annotations |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在資訊過剩的時代,線上閱讀內容的提供量遠遠超過讀者可以自行負荷的能力。這一類資訊過載的問題,則可能在遇到語言障礙時加劇。在探索提升閱讀效率的方法上,我們認為,註解對於在設計第二外語閱讀界面上扮演著相當重要的角色。這裡,我們探討人工生成的註解作為閱讀第二外語文章輔助的作用。在前兩個研究中,我們探討使用圖像作為輔助來視覺化第二語言及機器翻譯後文章中關鍵字做為閱讀策略對於讀者之影響。研究一的結果表明,相對於傳統的閱讀和學習策略(例如:中文定義輔助),使用與語義相關的圖片,讀者在長期能達到顯著較高的理解。在研究二中,我們發現,相較於使用原始圖片作為輔助,具有區域標記的圖片可以更進一步地輔助讀者對於機器翻譯文章的主觀理解。這一發現表明利用圖像於介面設計可以作為文章理解補充註釋的替代方法。在研究一和研究二之後,我們試圖了解讀者如何看待其他讀者產生的註解以降低讀者所需的認知負荷。故在研究三,我們引進群眾外包的技術以模擬社群註記環境來視覺化文章的重要區域,試圖提高讀者的閱讀效率。通過一系列的研究,我們提出了基於前述研究得到之設計寓意和準則的第二外語閱讀介面設計,努力往減低跨語言閱讀障礙的目標努力。
In the era of information overabundance, the amount of content available to read and need to read may easily exceed what readers can handle on their own. The problem of information overload can be exacerbated when encountering language barriers. In exploration of methods for improving reading efficiency when dealing with second language content, we consider that annotations can play an important role in interface design. Here, we present studies that examine the effects of human-generated annotations as reading support for second language articles. In the first two studies, we explore the strategy of using images as a secondary and supplementary medium to visualize keywords within second-language articles as well as machine-translated passages. Results of study 1 indicated that with semantic-related pictures, readers reached significant higher comprehension in the long term, comparing to traditional reading and learning strategies (e.g. Chinese definitions as support). In study 2, we found that region-of-interest annotated pictures can better support readers’ subjective comprehension than using raw pictures as support. The findings suggest an alternative design of applying pictures as a supplementary resource in textual comprehension. After study 1 and study 2, we begin to investigate how readers perceived annotation support generated from other readers. In study 3, we apply crowdsourcing technique to simulate the social environment and visualize the important part of article in order to improve readers’ reading efficiency. Through a series of studies, we propose a reading system design that is developed based on the design implication and guidelines from the findings, to work towards the goal of crossing language barriers.
Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol., 59, 617-645.
Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S., Karger, D. R., ... & Panovich, K. (2015). Soylent: a word processor with a crowd inside. Communications of the ACM, 58(8), 85-94.
Cheng, S., Sun, Z., Sun, L., Yee, K., & Dey, A. K. (2015, April). Gaze-based annotations for reading comprehension. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1569-1572). ACM.
Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. Journal of Consumer Research, 12(2), 125-134.
Chircop, L., Radhakrishnan, J., Selener, L., & Chiu, J. (2013, April). Markitup: crowdsourced collaborative reading. In CHI'13 Extended Abstracts on Human Factors in Computing Systems (pp. 2567-2572). ACM.
DeStefano, D., & LeFevre, J. A. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23(3), 1616-1641.
Donath, J., Karahalios, K., & Viegas, F. (1999). Visualizing conversation. Journal of Computer‐Mediated Communication, 4(4), 0-0.
Ehara, Y., Shimizu, N., Ninomiya, T., & Nakagawa, H. (2010, February). Personalized reading support for second-language web documents by collective intelligence. In Proceedings of the 15th International Conference on Intelligent User Interfaces (pp. 51-60). ACM.
Francis, W. S., Fernandez, N. P., & Bjork, R. A. (2010). Conceptual and non-conceptual repetition priming in category exemplar generation: Evidence from bilinguals. Memory, 18(7), 787-798.
Gao, G., Wang, H. C., Cosley, D., & Fussell, S. R. (2013, April). Same translation but different experience: the effects of highlighting on machine-translated conversations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 449-458). ACM.
Gunelius, S. (2014). The Data Explosion in 2014 Minute by Minute – Infographic. ACI. Retrieved 13 July 2016, from http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic
Hara, K., Le, V., & Froehlich, J. (2013, April). Combining crowdsourcing and google street view to identify street-level accessibility problems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 631-640). ACM.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, 52, 139-183.
Hong, L., & Chi, E. H. (2009, April). Annotate once, appear anywhere: collective foraging for snippets of interest using paragraph fingerprinting. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1791-1794). ACM.
Kinchla, R. A., & Wolfe, J. M. (1979). The order of visual processing: “Top-down,” “bottom-up,” or “middle-out”. Perception & psychophysics, 25(3), 225-231.
Kittur, A. (2010). Crowdsourcing, collaboration and creativity. ACM Crossroads, 17(2), 22-26.
Kittur, A., Smus, B., Khamkar, S., & Kraut, R. E. (2011, October). Crowdforge: Crowdsourcing complex work. In Proceedings of the 24th annual ACM Symposium on User Interface Software and Technology (pp. 43-52). ACM.
Kralisch, A., & Mandl, T. (2006, January). Barriers to information access across languages on the internet: Network and language effects. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06) (Vol. 3, pp. 54b-54b). IEEE.
Lee, M. J., & Tedder, M. C. (2003). The effects of three different computer texts on readers' recall: based on working memory capacity. Computers in Human Behavior, 19(6), 767-783.
Nelson, L., Held, C., Pirolli, P., Hong, L., Schiano, D., & Chi, E. H. (2009, April). With a little help from my friends: examining the impact of social annotations in sensemaking tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1795-1798). ACM.
Oh, J., Nam, S., & Lee, J. (2014, April). Generating highlights automatically from text-reading behaviors on mobile devices. In CHI'14 Extended Abstracts on Human Factors in Computing Systems (pp. 2317-2322). ACM.
Organisciak, P., Teevan, J., Dumais, S., Miller, R. C., & Kalai, A. T. (2014, September). A crowd of your own: Crowdsourcing for on-demand personalization. In Second AAAI Conference on Human Computation and Crowdsourcing.
Pillias, C. & Cubaud, P. (2015). Bilingual Reading Experiences: What They Could Be and How to Design for Them. Human-Computer Interaction – INTERACT 2015, 531-549. http://dx.doi.org/10.1007/978-3-319-22701-6_39
Schwamborn, A., Thillmann, H., Opfermann, M., & Leutner, D. (2011). Cognitive load and instructionally supported learning with provided and learner-generated visualizations. Computers in Human Behavior, 27(1), 89-93.
Sheng, V. S., Provost, F., & Ipeirotis, P. G. (2008, August). Get another label? improving data quality and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 614-622). ACM.
Snow, R., O'Connor, B., Jurafsky, D., & Ng, A. Y. (2008, October). Cheap and fast---but is it good?: evaluating non-expert annotations for natural language tasks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 254-263). Association for Computational Linguistics.
Tashman, C. S., & Edwards, W. K. (2011, May). LiquidText: a flexible, multitouch environment to support active reading. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3285-3294). ACM.
Test your English. Cambridge English Language Assessment. Retrieved 12 July 2016, from http://www.cambridgeenglish.org/test-your-english/adult-learners/results/
Tsai, H. L., Han, C. H., Wu, E. H., Yang, C. L., & Wang, H. C. (2015, April). Tag & Link: Supporting Regional and Relational Tagging in Images with Direct Annotation. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (pp. 1791-1796). ACM.
Wang, H. C., Fussell, S. R., & Cosley, D. (2011, March). From diversity to creativity: Stimulating group brainstorming with cultural differences and conversationally-retrieved pictures. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (pp. 265-274). ACM.
Ware, C. (2010). Visual thinking: For design. Morgan Kaufmann.
Weld, D. S., Lin, C. H., & Bragg, J. (2014). Artificial intelligence and collective intelligence.
Wolfe, J. (2002). Annotation technologies: A software and research review. Computers and Composition, 19(4), 471-497.
Yamashita, N., & Ishida, T. (2006a, January). Automatic prediction of misconceptions in multilingual computer-mediated communication. In Proceedings of the 11th International Conference on Intelligent User Interfaces (pp. 62-69). ACM.
Yamashita, N., & Ishida, T. (2006b, November). Effects of machine translation on collaborative work. In Proceedings of the 2006 20th anniversary Conference on Computer Supported Cooperative Work (pp. 515-524). ACM.
Yu, C. H., & Miller, R. C. (2010, April). Enhancing web page readability for non-native readers. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 2523-2532). ACM.
Yu, L., & Nickerson, J. V. (2011, May). Cooks or cobblers?: crowd creativity through combination. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1393-1402). ACM.
Zhou, S., Livingston, I., Schiefsky, M. J., Shieber, S. M., & Gajos, K. Z. (2016). Ingenium: Engaging Novice Students with Latin Grammar. In Proceedings of the 2016 SIGCHI Conference on Human Factors in Computing Systems (CHI '16) (pp. 944-956). ACM.