簡易檢索 / 詳目顯示

研究生: 黎振安
Li, Chen-An
論文名稱: The Study of Fluid Flow and Heat Transfer Inside Rectangular PDMS microchannels
PDMS矩形微通道內流體流動與熱傳之研究
指導教授: 黃智永
Huang, Chih-Yung
劉通敏
Liou, Tong-Miin
口試委員: 楊建裕
吳宗信
饒達仁
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 121
中文關鍵詞: PDMS微流道矩形管流體行為熱傳溫度螢光感測法微粒子影像測速法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文主旨在探討微流道內之流體行為及熱傳現象,並與巨觀尺寸下之結果相比較,主要量測之物理量為流體的速度及溫度。分別利用微粒子影像測速法及溫度螢光分子感測法進行實驗,其中以微粒子影像測速法量測微直管與90。彎管流道內的速度場,並以溫度螢光分子感測法量測微流道內流場深度方向整 體之平均溫度分佈及微流道壁面溫度,此兩法皆具有非侵入式及全域性量測之特性,提供一個不干擾流場情形之量測結果。
    以往溫度螢光分子感測法大都運用於航太工程相關領域中,偏向巨觀尺寸範圍之量測,直到近幾年來逐漸有學者將此技術轉移至微流場量測上。以往微機電系統溫度量測裝置都需要透過繁瑣的製程步驟來完成,而有別於傳統微機電系統溫度量測方式,溫度螢光分子製作方法簡易,且可提供高解析度之流場中全域性溫度分佈。本研究考慮不同螢光感測分子搭配適合之溶劑及黏著劑,製做出螢光溫度感測溶液及塗料,利用螢光溫度感測分子對溫度之光化學特性,即可開發出應用於微流道溫度量測之工具,且同時利用逐點校正法彌補傳統單點校正之不足,增加量測準確性及量測範圍,建立更完整的測量方法。
    本論文以PDMS微矩形直管流道及微矩形90。彎管流道量測其內部流場速度向量變化並加以探討,在微直管部分以去離子水為工作流體,在雷諾數為0.37時,量測出在深寬比0.67及0.33之流道內部由發展區至完全發展區之速度分佈,空間解析度可至近壁2 μm之位置。且觀察到PDMS表面疏水性使邊界出現滑移現象,而滑移長度介於1.9~3.3 μm間,由中心位置往側壁推算80%距離內之範圍與解析解相當穩合。而由工作流體溫度變化發現在深寬比0.12之直管微流道中,熱發展長度為Gz-1/2~0.384,且在熱完全發展區中Nu為2.20;而在微彎管部分則是在雷諾數27時以分層方式量測不同深度平面速度分佈,並成功建構出其二次流情形,且由軸向及橫向溫度變化也可看出二次流使流體產生混合導致轉角後溫度驟升的效果。本研究得到二次流對微流道熱傳之影響,並可應用於往後微熱交換器之設計上。

    ABSTRACT
    This study aims to examine the velocity and temperature fields in various microchannels and compares with theory. With novel molecule based temperature sensors, both surface temperature and fluid temeperature profiles inside the microchannels were acquired. 2-D velocity profiles were analyzed through μ-PIV techniques. These two techniques both provide non-intrusive and global measurements.
    The molecule based temperature sensor was widely used in aerodynamic engineering in the past decades, but applications in micro fluidic system measurements were just began in recent years. Differentiates from traditional micro temperature sensors prepared by complicated MEMS fabrication procedure, the molecule based temperature sensors simplifies the processes of sensor preparation as well as the installation. By selecting different kinds of luminescent molecule along with various solvent and binder, the molecular based temperature sensors have been investigated through theirs photochemistry properties and they have been applied to the measurement of micro fluidic system. At the same time, pixel-by-pixel calibration method was utlized to increase the accuracy and extend the range of temperature measurement.
    This study also performed on velocity measurement in rectangular microchannel with straight and 90。 sharp bend structures and DI water was used as working fluid. The μ-PIV system was demonstrated to be capable of acquiring velocity profiles at the distance 2 μm away from the side wall from the developing region to fully developed region in straight microchannels with aspect ratios of 0.67 and 0.33 at Reynolds number of 0.37. The slip length was calculated in the range of 1.9~3.3μm at fully developed region due to the hydrophobicity of PDMS material. The velocity profile calculated by Navior-Stokes equations with non-slip boundary condition agreed with the experimental results from center to 80% of the channel. The temperature distribution was measured in straight microchannels with aspect ratio of 0.12 and bottom side was heated as uniform wall temperature thermal boundary condition. Nusselt number variation in the channel was analyzed from thermal developing region to thermal fully developed region. Results showed thermal entrance length was Gz-1/2~0.384 and Nu reached 2.20 in the fully developed region. The velocity profiles of flow passing through a 90。 sharp bend were also measured at Reynolds number of 27.66 and 46.62. Secondary flow structure has been observed with multiple layers measurements around the corner along the depth of the microchannels. The temperature distributions of axial(x) and crosswise(y) directions before and after the corner show fluid mixing due to secondary flow effect. This study not only measured and analyzed the flow and thermal fields in microchannels but also provided essential information for future applications of micro-heat-exchanger.


    目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XVI 符號說明 XVII 一般符號 XVII 無因次化參數 XVIII 羅馬符號 XIX 下標符號 XX 第一章、序論 1 1.1研究動機 1 1.2文獻回顧 4 1.2.1微流道單相熱傳研究 4 1.2.2 μ-PIV發展 14 1.2.3 TSP螢光溫度感測塗料發展 19 1.3研究目的 22 1.4論文架構 22 第二章、實驗原理 24 2.1μ-PIV量測原理 24 2.2 TSP螢光溫度感測塗料 26 第三章、實驗方法 30 3.1微流道製作 30 3.2 u-PIV系統介紹 32 3.2.1 u-PIV實驗儀器架設 32 3.2.2 流量控制/訊號產生器設定 33 3.2.3景深計算 35 3.3 TSP螢光溫度感測塗料研究 37 3.3.1螢光溫度感測塗料配製流程 37 3.3.2校正實驗儀器架設 41 3.3.3螢光溫度感測塗料/溶液校正曲線 42 3.3.4校正公式 50 第四章、基本流場驗證與討論 52 4.1微矩形直管道速度場驗證 52 4.1.1發展區域量測與討論 52 4.1.2完全發展區域量測與討論 55 4.2微矩形直管道溫度場驗證 59 4.2.1微矩形直管道溫度量測實驗配置 59 4.2.2微矩形直管道溫度量測 61 第五章、90.矩形微彎管速度場溫度場量測 74 5.1 90.矩形微彎管速度場量測 74 5.2 90.矩形微彎管溫度場量測 78 第六章、誤差分析 82 6.1影像處理 82 6.2螢光飽和度測試 84 6.3逐點影像校正(Pixel-by-pixel calibration) 86 6.4誤差分析 92 第七章、結論 98 參考文獻 101 附錄一 107 附錄二 109 Vita 121   圖目錄 圖 1.1、不同Kn下Nu隨Gz-1之變化曲線圖[14] 9 圖 1.2、熱電偶於微流道外壁面分佈圖[25] 14 圖 1.3、溫度感測器佈植於微流道下壁面示意圖[26,27] 14 圖 1.4、LDV設備示意圖[33] 17 圖1.5、單組與多組影像速度向量分析結果[37] 18 圖 1.6、微渦輪葉片溫度可視化圖[46] 21 圖 1.7、(a)T型管尺寸示意圖(b)通電壓V=2500 V流體溫度可視化圖(c)通電壓V= -2500 V流體溫度可視化圖[48] 21 圖2. 1、PIV運作原理…………………………………………………25 圖2. 2、能階躍動簡圖 27 圖2. 3、TSP量測示意圖(a)量表溫(b)量液溫 28 圖2. 4、各類型溫度感測塗料校正曲線圖[44]. 29 圖3. 1、微流道製做流程………………………………………………31 圖3. 2、矩形直管微流道尺寸示意圖 31 圖3. 3、矩形90。彎管微流道尺寸示意圖 32 圖3. 4、μ-PIV實驗系統圖 33 圖3. 5、訊號產生器時序圖 35 圖3. 6、螢光感測法校正儀器配置圖 42 圖3. 7、TSP絕對亮度值隨溫度變化圖 43 圖3. 8、TSP亮度比隨溫度變化圖 44 圖3. 9、TSP亮度隨時間變化圖,脈衝激發(藍);連續激發(紅) 45 圖3. 10、TSP亮度隨時間變化圖 46 圖3. 11、TSP亮度比隨溫度變化圖(EuTTA/Toluene/Dope) 47 圖3. 12、TSP亮度比隨溫度變化圖(EuTTA/Toluene/PS) 47 圖3. 13、TSP亮度比隨溫度變化圖(EuTTA/Hexane/Dope) 48 圖3. 14、亮度均勻度分佈圖 48 圖3. 15、溫度螢光感測溶液亮度比隨溫度變化圖(Rhodamine B /DI water) 49 圖3. 16、螢光塗料校正曲線(EuTTA/ Toluene/PS ) 50 圖3. 17、螢光溶液校正曲線(Rhodamine B/DI water) 51 圖4. 1、入口速度取點位置示意圖(1~8點依序是x=4 µm、12 µm、22.8 µm、38.9 µm、49.6 µm、423 µm、763 µm、5600 µm)………..53 圖4. 2、100 μm寬微流道無因次化的速度分佈發展(從入口x=4 µm到中段x=5600 µm, Um=8 mm/s) 54 圖4. 3、100 μm直管微流道在全展流區速度分佈隨位置變化圖 (局部放大圖:距離下壁面15 μm內速度變化) 57 圖4. 4、200 μm直管微流道在全展流區速度分佈隨位置變化圖 (局部放大圖:距離下壁面16 μm內速度變化) 58 圖4. 5、矩形直管微流道溫度量測儀器配置圖 60 圖4. 6、矩形直管微流道溫度量測實驗配置圖 61 圖4. 7、由入口至出口流道軸心線(y/W=0)之壁溫變化曲線(Tw=50。C,工作流體溫度:8~10。C) 63 圖4. 8、流體溫度可視化圖(Tw=50。C,Q=20 ml/hr-Re=30.7) 63 圖4. 9、由入口至出口流道軸心線(y/W=0)之溫度變化曲線(Tw=50。C,工作流體溫度:8~10。C) 65 圖4. 10、六組流量於流道入口處(x=0)橫剖面溫度分佈圖(Tw=50。C) 66 圖4. 11、流道內熱傳行為示意圖 67 圖4. 12、單壁定壁溫矩形微直管實驗解與解析解比較圖 72 圖4. 13、矩形管流於定壁溫條件熱完全發展區理論Nu值[6] 72 圖4. 14、微管道液相熱傳實驗解與解析解整理圖 73 圖5. 1、100 µm寬矩形90。彎管z=0.5、xy平面速度向量圖……….76 圖5. 2、200 µm寬矩形90。彎管z=0.5、xy平面速度向量圖 76 圖5. 3、彎管下游x/Dh=1處yz剖面上 : (a)v分量速度分佈圖(b)二次流示意圖(朝上游看) 77 圖5. 4、90。矩形微彎管溫度可視圖 79 圖5. 5、90。矩形微彎管入口處(y/Lref= -1.0)橫剖面溫度分佈圖 80 圖5. 6、90。矩形微彎管轉角上游五個橫剖面位置溫度分佈圖(y/Lref= -0.965,-0.970,-0.975,-0.980,-0.990) 80 圖5. 7、90。矩形微彎管轉角下游六個橫剖面位置溫度分佈圖(x/Lref=1.01,1.02,1.025,1.030,1.035,1.200) 81 圖5. 8、90。矩形微彎管流道軸心線溫度發展情形 81 圖6. 1、單張影像與99張影像平均差異…………………………….83 圖6. 2、資料點平均與未平均差異 83 圖6. 3、絕對亮度值隨時間之變化比較圖 85 圖6. 4、入口區絕對螢光亮度原始圖檔(a)量測前13小時 (b)量測開始時間 85 圖6. 5、EuTTA於不同溫度下亮度可視圖及其亮度比值(a)28。C絕對亮度值(b)60。C絕對亮度值(c)28。C與60。C亮度比值 89 圖6. 6、鋁片表面螢光相對亮度比值(參考亮度:80。C) 90 圖6. 7、TSP於不同溫度下螢光亮度可視圖(a)28。C絕對亮度(b)50。C絕對亮度(c)28。C及50。C螢光亮度比 90 圖6. 8、流道軸心線(y/W=0)螢光亮度比(參考亮度:50。C) 91 圖6. 9、流道入口處軸心線上(y/W=0),十個不同位置之校正曲線(x=0,1.7,3.4,5.1,6.8,8.5,10.2,11.9,13.6,15.3,17 mm) 91 圖6. 10、定壁溫40。C-20 ml/hr流道軸心線(y/W=0)溫度變化,單點校正法與逐點校正法比較 92 圖A. 1(TSP亮度隨溫度變化圖(a)亮度比-溫度(b)絕對亮度值-溫度) 108 圖B. 1、流體溫度可視化圖(Tw=40。C,Q=20 ml/hr)………………. 109 圖B. 2、流體溫度可視化圖(Tw=50。C,Q=20 ml/hr) 109 圖B. 3、由入口至出口流道軸心線(y/W=0)之溫度變化曲線(Tw=40。C,工作流體溫度:室溫) 110 圖B. 4、由入口至出口流道軸心線(y/W=0)之溫度變化曲線(Tw=50。C,工作流體溫度:室溫) 111 圖B. 5、流道入口處(x/Lref=0)橫剖面溫度分佈圖(Tw=40。C) 112 圖B. 6、流道入口處(x/Lref=0)橫剖面溫度分佈圖(Tw=50。C) 112 圖B. 7、矩形微直管單壁定壁溫入口區至完全發展區熱傳情形(Tw:40。C,工作流體:室溫) 117 圖B. 8、矩形微直管單壁定壁溫入口區至完全發展區熱傳情形(Tw:50。C,工作流體:室溫) 117 圖B. 9、單壁定壁溫矩形微直管實驗解與解析解比較圖 118 圖B. 10、由入口至出口流道軸心線(y/W=0)之溫度變化曲線(Tw=50。C,工作流體溫度:5~12。C) 119 圖B. 11、由入口至出口流道軸心線(y/W=0)之壁溫變化曲線(Tw=50。C,工作流體溫度:5~12。C) 119 圖B. 12、矩形微直管單壁定壁溫入口區至完全發展區熱傳情形(Tw=50。C,工作流體溫度:5~12。C) 120  

    參考文獻
    [1]. T. Matsunaga, M. Esashi. Acceleration Switch with Extended Holding Time Using Squeeze Film Effect for Side Airbag Systems. Sensors and Actuators. 2002, Vol. A 100, pp. 10-17.
    [2]. H. J. Park, H. W. Nam, B. S. Song, J. L. Choi, H. C. Choi, J. C. Park, M. N. Kim, J. T. Lee, J. H. Cho. Design of Bi-directional and Multi-channel Miniaturized Telemetry Module for Wireless Endoscopy. 2"d Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. 2002, Vol. Poster 151, pp. 273-276.
    [3]. Y. Wang, J. Zhe, B. T. F. Chung, P. Dutta. A Rapid Magnetic Particle Driven Micromixer. Microfluid Nanofluid. 2008, Vol. 4, pp. 375-389.
    [4]. S. Hardt, K. S. Drese, V. Hessel, F. Schomfeld. Passive Micromixers for Applications in the Microreactor. Microfluid Nanofluid. 2005, Vol. 1, pp. 108-118.
    [5]. F. Jiang, K. S. Drese, S. Hardt, M. Kupper, F. Schonfeld. Helical Flows and Chaotic Mixing in Curved Micro Channels. J. of American Institute of Chemical Engineers. 2004, Vol. 50, pp. 2297-2305.
    [6]. R. K. Shah, A. L. London. Laminar Flow Forced Convection in Ducts. New York : Academic Press, 1978.
    [7]. R. K. Shah, M. S. Bhatti. Handbook of Single-Phase Convective Heat Transfer. New York : Wiley, 1987.
    [8]. D. L. Hitt, Confocal Imaging of Fluid Interfaces in Microchannel Geometries. Technology and Education of Microscopy. 2004.
    [9]. R. Lima, S. Wada, K. Tsubota, T. Yamaguchi. Confocal Micro-PIV Measurements of Three-dimensional Profiles of Cell Suspension Flow in a Square Micro-channel. Meas. Sci. Technol. 2006, Vol. 17, pp. 797-808.
    [10]. L., Kuddusi. "Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Version of Constant Wall Temperature". Int. J. of Thermal Science. 2007, Vol. vol. 46, pp. 998-1010.
    [11]. L. Kuddusi, E. Cetegen. "Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Version of Constant Heat Flux". Int. J. of Heat and Fluid Flow. 2007, Vol. vol. 28, pp. 777-786.
    [12]. P. Lee, S. V. Garimella. "Thermally Developing Flow and Heat Transfer in Rectangular Micro-channels of Different Aspect Ratios". Int. J. of Heat and Mass Transfer. 2006, Vol. vol. 49, pp. 3060-3067.
    [13]. G. Tunc, Y. Bayazitoglu. "Heat Transfer in Rectangular Micro-channels". Int. J. of Heat and Mass Transfer. 2002, Vol. vol. 45, pp. 765-773.
    [14]. H. D. M. Hettiarachchi, M. Golubovic, W. M. Worek, W. J. Minkowycz. "Three-dimensional Laminar Slip Flow and Heat Transfer in a Rectangular Micro-channel with Constant Wall Temperature". Int. J. of Heat and Mass Transfer. 2008, Vol. vol. 51, pp. 5088-5096.
    [15]. N. G. Hadjiconstantinou, O. Simek. "Constant Wall Temperature Nusselt in Micro and Nano-channels". American Society of Mechanical Engineers (ASME). 2002, Vol. vol. 124, pp. 356-364.
    [16]. M. Renksizbulut, H. Niazmand, G. Tercan. Slip-flow and Heat Transfer in Rectangular Microchannels with Constant Wall Temperature. Int. J. of Thermal Science. 2006, Vol. 45, pp. 870-881.
    [17]. R. B. Peterson, Numerical Modeling of Conduction Effects in Microscale Counterflow Heat Exchangers. Microscale Thermophys. 1999, Vol. 3, pp. 17-30.
    [18]. G. Maranzana, I. Perry, D. Maillet. Mini- and Micro-channels: Influence of Axial Conduction in the Walls. Int. J. of Heat and Mass Transfer. 2004, Vol. 47, pp. 3993-4004.
    [19]. G. Gamrat, M. Favre-Marinnet, D. Asendrych. Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Micro-channels. Int. J. of Heat and Mass Transfer. 2005, Vol. 48, pp. 2943-2954.
    [20]. Z. Y. Guo, Z. X. Li. Size Effect on Microscale Single-Phase Flow and Heat Transfer. Int. J. of Heat and Mass Transfer. 2003, Vol. 46, pp. 149-159.
    [21]. S. Shen, J. L. Xu, J. J. Zhou, Y. Chen. "Flow and Heat Transfer in Microchannels with Rough Wall Surfaces". Energy Conversion and Management. 2006, Vol. vol. 47, pp. 1311-1325.
    [22]. S. G. Kandlikar, S. Joshi, S. Tian. Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes. Heat Transfer Engineering. 2003, Vol. 3, pp. 4-16.
    [23]. H. Y. Wu, P. Cheng. An Experimental Study of Convective Heat Transfer in Silicon Micro-channels with Different Surface Conditions. Int. J. of Heat and Mass Transfer. 2003, Vol. 46, pp. 2547-2556.
    [24]. C. Y. Lin. "An Experimental Study of Single/Two Phase Flow and Heat Transfer in Micro-channels". Ph.D. Thesis. 2010 ,Ntional Sun Yat-Sen University, Taiwan R.O.C..
    [25]. X. F. Peng, G. P. Peterson. "Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures". Int. J. of Heat and Mass Transfer. 1996, Vol. vol. 39, pp. 2599-2608.
    [26]. H. S. Ko, C. W. Liu, C. Gau, C. S. Yang. "Fabrication and Design of a Heat Transfer Micro-channel System by a Low Temperature MEMS Technique". J. of Micromechanics and Microengineering. 2007, Vol. vol. 17, pp. 983-993.
    [27]. H. S. Ko, C. Gau. "Local Heat Transfer Process and Pressure Drop in a Micro-channel Integrated with Arrays of Temperature and Pressure Sensors". Microfluid Nanofluid. 2011, Vol. vol. 10, pp. 563-577.
    [28]. P. Chamarthy, S. V. Garimella, S. T. Wereley. Measurement of the Temperature Non-uniformity in a Micro-channel Heat Sink Using Microscale Laser-Induced Fuorescence. Int. J. of Heat and Mass Transfer. 2010, Vol. 53, pp. 3275-3283.
    [29]. P. Lee, S. V. Garimella, D. Liu. "Investigation of Heat Transfer in Rectangular Microchannels". Int. J. of Heat and Mass Transfer. 2005, Vol. vol. 48, pp. 1688-1704.
    [30]. G. L., Morini. "Single-phase Convective Heat Transfer in Microchannels: a Review of Experimental Results". Int. J. of Thermal Science. 2004, Vol. vol. 43, pp. 631-651.
    [31]. J. R. Weske, Experimental Investigation of Velocity Distribution Downstream of Single Duct Bends. NACATN. 1948, pp. 1471-1475.
    [32]. M. D. Kelleher, D. L. Flentie, R. J. McKee. An Experimental Study of the Secondary Flow in a Curved Rectangular Channel. American Society of Mechanical Engineering. 1980, Vol. 102, pp. 92-96.
    [33]. Y. Yeh, H. Z. Cummins. Localize Fluid Flow Measurement with An He-Ne Laser Spectrometer. Appl. Phys. Letters. 1964, Vol. 10, pp. 176-178.
    [34]. R. J. Adrain, Particle-image Techniques for Experimental Fluid Mechanics. Annual Review of Fluid Mechanics. 1991, Vol. 23, pp. 261-304.
    [35]. C. D. Meinhart, A. K. Prasad, R. J. Adrian. "A Parallel Digital Processor System for Particle Image Velocimetry". Meas. Sci. Technol. 1993, Vol. vol. 4, pp. 619-626.
    [36]. J. G. Satiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian. "A Micro-particle Image Velocimetry System". Experiments in Fluids. 1998, Vol. vol. 25, pp. 316-319.
    [37]. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian. "A Particle Image Velocimetry System for Microfluidics". Experiments in Fluids. 1998, Vol. vol. 25, pp. 316-319.
    [38]. K. Kikiuchi, O. Mochizuki. "Micro-PIV Measurements in Micro-tubes and Proboscis of Mosquito". J. of Fluid Science and Technology. 2008, Vol. vol. 3, pp. 975-986.
    [39]. C. D. Meinhart, S. T. Wereley, M. H. B. Gary. "Volume Illumination for Two-dimensional Particle Image Velocimetry". Meas. Sci. Technol. 2000, Vol. vol. 11, pp. 809-814.
    [40]. C. D. Meinhart, S. T. Wereley. "The Theory of Diffraction-limited Resolution in Microparticle Image Velocimetry". Meas. Sci. Technol. 2003, Vol. vol. 14, pp. 1047-1053.
    [41]. N. T. Nguyen, S. T. Wereley. "Fundamentals and Applications of Micro-fluidics". s.l. : MEMS Microelectromechanical Systems Series, 2002.
    [42]. T. M. Liou, S. J. Lai, M. W. Wang. Investigation of Secondary Flow in 180degree Rectangular Micro-curved Channel with Micro-PIV. Hsing-Chu : s.n.
    [43]. A. P. Sudarsan, V. M. U. A. McFerrin. Multi-vortex Micro-mixing. New York, USA : Department of Chemical Engineering, Texas A&M University, College Station, 2005.
    [44]. T. Liu, J. P. Sullivan. "Pressure and Temperature Sensitive Paints". Berlin : Germany: Springer-Verlag, 2005.
    [45]. C. Y. Huang, H. Sakaue, J. W. Gregory, J. P. Sullivan. "Molecular Sensors for MEMS". 40th Aerospace Sciences Meeting & Exhibit (Reno, NV.). 2002,, pp. AIAA-2002-0256.
    [46]. C. Y. Huang, J. W. Gregory, H. Nagai, K. Asai, J. P. Sullivan. "Molecular sensors in microturbine measurement". ASME International Mechanical Engineering Congress and Exposition. 2006, Vols. IMECE2006-13814, pp. 45.
    [47]. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, M. Maeda. Visualization of Convective Mixing in Micro-channel by Fluorescence Imaging. Meas. Sci. Technol. 2003, Vol. 14, pp. 114-121.
    [48]. D. Ross, M. Gaitan, L. E. Locascio. "Temperature Measurement in Microfluidic System Using a Temperature-Dependent Fluorescent Dye". Anal. Chem. 2001, Vol. vol. 73, pp. 4117-4123.
    [49]. R. Fu, B. Xu, D. Li. "Study of the Temperature Field in Micro-channels of a PDMS Chip with Embedded Local Heater Using Temperature-dependent Fluorescent Dye". Int. J. of Thermal Sciences. 2006, Vol. vol. 45, pp. 841-847.
    [50]. J. Zhou, H. Yan, Y. Zheng, H. Wu. "Highly Fluorescent Poly(dimethylsiloxane) for On-Chip Temperature Measurements". Advanced Functional Materials. 2009, Vol. vol. 19, pp. 19, 324-329.
    [51]. R. Samy, T. Glawdel, C. L. Ren. "Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly(dimethylsiloxane)/Rhodamine B". Anal. Chem. 2008, Vol. vol. 80, pp. 80, 369-375.
    [52]. M. I. J. Stich, S. Nagl, O. S. Wolfbies, U. Henne, M. Schaeferling. "A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces". Advanced Functional Materials. 2008, Vol. vol. 18, pp. 1399-1406.
    [53]. S. Someya, S. Yoshida, Y. Li, K. Okamoto. "Combined Measurement of Velocity and Temperature Distributions in Oil Based on the Luminescent Lifetimes of Seeded Particles". Meas. Sci. Technol. 2009, Vol. vol. 20, pp. 1-9.
    [54]. M. Raffel, C. Willert, S. Wereley, J. Kompenhans. "Particle Image Velocimetry-A Particle Guide". s.l. : 2nd Edition, Springer, 2005.
    [55]. S. T. Wereley, L. Gui. "A correlation-based central difference image correction (CDIC) method and application in a four-roll-mill". Exp. Fluids. 2003, Vol. vol.34, pp. 42-51.
    [56]. L. Gui, J. M. Seiner. "An improvement in the 9-point central difference image correction method for digital particle image velocimetry recording evaluation". Meas. Sci. Technol. 2004, Vol. vol. 15, pp. 1598-1964.
    [57]. S. Inoue, K. Spring. Video Microscopy:The Fundamentals. New York : Pleum, 1997.
    [58]. M. I. J. Stich, O. S. Wolfbeis. "Fluorescence Sensing and Imaging Using Pressure-Sensitive Paints and Temperature-Sensitive Paints". Springer Ser Fluoresc. 2008, Vol. vol. 5, pp. 429-461.
    [59]. D. C. Tretheway, C. D. Meinhart. A Generating Mechanism for Apparent Fluid Slip in Hydrophbic Micro-channels. Physics of Fluids. 2004, Vol. 16, pp. 1509-1515.
    [60]. X. Zheng, Z. Silber-Li. Measurement of Velocity Profiles in a Rectangular Micro-channel with Aspect Ratio a = 0.35. Exp. Fluids. Vol. 44, pp. 951-959.
    [61]. C. Y. Huang, J. W. Gregory, J. P. Sullivan. "Micro-channel Pressure Measurement Using Molecular Sensors". J. of Micro-electromechanical Systems. 2007, Vol. vol. 16, pp. 777-785.
    [62] J. Y. Jung, H. Y. Kwak "Fluid Flow and Heat Transfer in Microchannels with rectangular cross section". Heat and Mass Transfer. 2008, Vol. vol. 44, pp. 1041-1049[62] J. Y. Jung, H. Y. Kwak "Fluid Flow and Heat Transfer in Microchannels with rectangular cross section". Heat and Mass Transfer. 2008, Vol. vol. 44, pp. 1041-1049
    [63] P. X. Jiang, M. H. Fan, G. S. Si, Z. P. Ren "Thermal Hydraulic Performance of Small Scale Micro-channel and Porous Media Heat-exchangers". Int. J. of Heat and Mass Transfer. 2001, Vol. 44, pp. 1039-1051
    [64] T. Y. Lin "Experimental Analysis on Forced Convective Heat Transfer Characteristics in Micro Tubes by the Method of Liquid Crystal Thermography".. 2007, Ph.D. Thesis , National Central University, Taiwan R.O.C..
    [65] G. Tunc, Y. Bayazitoglu "Heat Transfer in Rectangular Microchannels". Int. J. of Heat and Mass Transfer 2002, Vol.45,pp 765-773


    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE