簡易檢索 / 詳目顯示

研究生: 高維達
Govinda, Gorle
論文名稱: 開發三硒化二鉍/石墨烯基奈米複合材料作為催化劑、感測器、生物成像探針和抗菌劑
Development of Bi2Se3/ Graphene Based Nanocomposites as Catalyst, Sensor, Bioimaging and Antibacterial Agents
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
林立元
Lin, Lih-Yuan
林嬪嬪
Lin, Pin-Pin
張家耀
Chang, Jia-Yaw
杜敬民
Du, Jing-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 164
中文關鍵詞: 生物成像納米材料膠體合成硒化鉍抗菌光觸媒左旋多巴對乙酰氨基酚電化學傳感器氧化石墨烯生物相容性
外文關鍵詞: Bioimaging, Nanomaterials, Colloidal Synthesis, Bismuth Selenide, Antimicrobial, Photocatalyst, Levodopa, Acetaminophen, Electrochemical Sensors, Graphene Oxide, Biocompatibility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的十年中,Bi2Se3由於其獨特的結構特性已成為各種應用中極具發展潛力的材料。Bi2Se3鍵結由Bi和Se原子之間的五個共價鍵組成,具有菱形晶胞的Se-Bi-Se-Bi-Se排列。Bi2Se3 的獨特結構特徵提供具吸引力的電子和光學特性,因此開拓了在不同領域之中的應用,例如:光電探測、超快激光、癌症治療和熱電材料。Bi2Se3是一種具有較低能帶隙(0.3eV)的半導體,這促使我們進一步探索其在各種應用中的潛能。
    工程奈米材料對滅菌和有機污染物的降解在生產安全和清潔飲用水中是非常有效的方法,因此非常需要開發可以充當NIR光介導的抗微生物劑以及光催化劑的新奈米材料,用以解決相關問題。本研究中通過高溫反應(膠體合成)製備新的奈米材料Bi2Se3奈米板(NPs),然後通過靜電相互作用在表面上用聚乙烯亞胺(PEI)包覆。開發的Bi2Se3 NPs / PEI表現出優異的NIR光活化抗菌性能及光催化性質可應用於殺菌和染料降解的等領域中。結果顯示,透過808 nm之紅外雷射光照射,Bi2Se3 NPs / PEI通過聯合雙模式光熱療法(PTT)和光動力療法(PDT)在10 min照射下分別透過產生熱和活性氧物質,得以根除近99 %的金黃色葡萄球菌和近97 %的大腸桿菌,PTT和PDT在殺死兩種細菌中的比例接近4:1。此外,Bi2Se3 NPs / PEI在配備700-1100 nm濾光片的鹵素燈照射下也可作為優異的光催化劑,鹵素燈分別照射亞甲基藍與羅丹明B溶液3小時及4小時後,對亞甲基藍的降解效率約為95 %,羅丹明B的降解效率約為93 %,本研究首次證明Bi2Se3 NPs以NIR光活化抗菌性能、光動力學性質及光催化性能。
    除此之外,如類石墨烯的無機層狀材料已成為新穎且應用廣泛的奈米材料。由於它們的厚度依賴的物理性質,它們在層狀剝落的二維晶體方面引起了巨大的科學興趣,在各種工業和技術領域有具吸引力的新應用。本研究中開發了一種低維硒化鉍NPs功能化氧化石墨烯改性Pt電極(Bi2Se3 NPs / GO / Pt),抗壞血酸(AA)存在下可同時測定L-多巴胺(LD)和對乙醯氨基酚(ACT)且具有良好的靈敏度。製備的電極在LD和ACT的電子轉移反應中顯示出快速加速,而在AA共存下沒有任何顯著干擾。在0.1 M磷酸鹽緩衝液中,所開發的生物傳感器在LD和ACT循環伏安法訊號中顯示出比pH 6.0的未改性Pt電極分別增強6倍和5倍。DPV數據顯示在最佳條件下,獲得的陽極峰值電流與LD和ACT濃度在0.006-0.25和0.0045-0.14 mM範圍內呈現良好的線性關係,陽極峰值電位分別為+0.25和+0.52V。 LD和ACT的訊雜比均為3,偵測極限為0.001和0.0005 mM,具有良好的電極內和電極間再現性。製作的傳感器具有製備方便、穩定性佳、對LD和ACT測定靈敏度高等優點,為證明了修飾電極的適用性,用於同時測定市售藥物和合成尿樣品中的LD和ACT。
    此外,氧化石墨烯(GO)由於其生物相容性、低毒性、親水性和易於官能化而受到極大關注。近年來氧化石墨烯量子點(GOQDs)用於各種應用中。然而,GOQDs的合成通常需要濃強酸,並且耗時長。在本研究中開發了一種簡單易用的一鍋化微波輔助合成法,以黑碳作為起始物和H2O2作為氧化劑合成GOQDs,這種新方法合成GOQDs需要2分鐘。合成的GOQDs表現出優異的體外和體內生物相容性,並且亦將其應用於生物顯影中。


    Over the last decade, Bi2Se3 has become a promising material in various kinds of applications owing to its unique structural properties. The bond structure of Bi2Se3 consists of five covalent bonds between the Bi and Se atoms like Se-Bi-Se-Bi-Se arrangement with rhombohedral unit cell. The unique structural features of Bi2Se3 can offer an attractive electronic and optical properties thus opens up in different fields such as photodetection, ultrafast lasers, cancer treatment, and thermoelectric materials. The Bi2Se3 is a semiconductor with lower energy band gap (0.3eV). This motivated us to explore its potency in various applications.
    Inactivation of bacteria and degradation of organic pollutants by engineered nanomaterials (NMs) are very effective approaches in producing safe and clean drinking water. Development of new NMs which can act as NIR light mediated antimicrobial agents as well as photocatalytic agents is highly required. Here with this motivation in this study, a novel NM Bi2Se3 nanoplates (NPs) were prepared by high-temperature reaction (colloidal synthesis) followed by wrapping with polyethyleneimine (PEI) on the surface through electrostatic interaction. The developed Bi2Se3 NPs/PEI exhibited excellent NIR light activated antimicrobial properties for bacterial eradication and efficient photocatalytic properties for organic dye degradation. The results showed that upon 808 nm laser irradiation the engineered Bi2Se3 NPs/PEI eradicated ∼99% of S. aureus and ∼97% of E. coli bacteria within 10 min irradiation through combined dual modal photothermal therapy (PTT) and photodynamic therapy (PDT) via the generation of heat and reactive oxygen species, respectively. The contribution of PTT and PDT was found to be nearly 4:1 ratio in killing both bacteria. In addition, Bi2Se3 NPs/PEI also acted as an excellent photocatalyst under illumination by a halogen lamp equipped with a 700-1100 nm band pass filter to achieve degradation efficiencies of ∼95% for methylene blue and ∼93% for Rhodamine B within 3 and 4 h, respectively. This is the first demonstration on the NIR light activated antimicrobial property, photodynamic property and photocatalytic property mediated by Bi2Se3 NPs.
    Further, Inorganic layered materials such as “graphene-like” inorganic analogues, have emerged as a new and versatile source of nanomaterials. Due to their thickness-dependent physical properties they have drawn an enormous scientific interest as regards their exfoliated two-dimensional crystals to attractive new applications in various industrial and technological sectors. In this study, we developed a low dimensional bismuth selenide NPs functionalized graphene oxide modified Pt electrode (Bi2Se3 NPs/GO/Pt) and used for the ultra-sensitive simultaneous determination of L-dopa (LD) and acetaminophen (ACT) in presence of ascorbic acid (AA) in different pharmaceutical samples. The fabricated electrode showed rapid acceleration in electron transfer reactions of LD and ACT without any significant interference in presence of an electro-active coexistent compound AA. The developed biosensor exhibited 6-fold and 5-fold enhancement in the cyclic voltammetry for LD and ACT signal than the bare Pt at pH 6.0 in 0.1 M phosphate buffer. The DPV data showed that under optimal conditions, the obtained anodic peak currents were linearly dependent on the LD and ACT concentrations in the range of 0.006–0.25 and 0.0045–0.14 mM at anodic peak potentials of +0.25 and +0.52 V, respectively. A low detection limits of 0.001 and 0.0005 mM were achieved with signal to noise ratio of 3 for both LD and ACT respectively with good intra- and inter- electrode reproducibility. The fabricated sensor offered numerous advantages such as convenient preparation, good stability and high sensitivity towards LD and ACT determination. The applicability of the modified electrode was also demonstrated for simultaneous determination of LD and ACT in commercially available pharmaceutical and in synthetic urine samples.
    In addition, Graphene oxide (GO) attained great attention owing to its biocompatibility, low toxicity, hydrophilic nature and ease of functionalization. Recently, graphene oxide quantum dots (GOQDs) were used in various applications. However, synthesis of GOQDs often necessitates strong concentrated acid, and takes a long time. In this study, we developed a simple and facile one-pot microwave assisted method for the synthesis of GOQDs by using black carbon as a precursor and H2O2 as a facile oxidant. The synthesis of GOQDs by this new methodology took 2 min. The synthesized GOQDs exhibited excellent in vitro and in vivo biocompatibility. The bioimaging studies were also performed.

    Acknowledgment... i Abstract in Chinese... iii Abstract in English...v Chapter 1 table content… viii Chapter 2 table content... ix Chapter 3 table content…… x Chapter 4 table content… xi Chapter 5 table content… xii Chapter 1 [Background and Introduction] 1.1 Introduction of nanomaterials… 1 1.2 Introduction of 2D based nanomaterials… 2 1.3 Introduction and applications of Bi2Se3 nanomaterials… 4 1.4 Synthesis methods for Bi2Se3 nanomaterials… 5 1.4.1 Hydrothermal method… 5 1.4.2 Mechanical Exfoliation… 5 1.4.3 Chemical Vapor Deposition… 6 1.4.4 Molecular-Beam Epitaxy… 6 1.4.5 Microwave synthesis system … 7 1.5 Introduction and applications of graphene oxide.. 7 1.6 Synthesis methods for graphene oxide… 8 1.6.1 Brodie's oxidation method……… 8 1.6.2 Staudenmaier method… 9 1.6.3 Hofmann method… 9 1.6.4 Hummers method… 9 1.7 References … 11 1.8 Figures… 19 Chapter 2 [Near Infrared Light Activatable PEI-Wrapped Bismuth Selenide Nanocomposites for Photothermal/Photodynamic Therapy Induced Bacterial Inactivation] 2.1 Introduction ..25 2.2 Methods and experiments … 27 2..2.1 Materials … 27 2.2.2 Synthesis of Bi2Se3 NPs and Bi2Se3 NPs/PEI composite... 27 2.2.3 Characterization… 28 2.2.4 NIR light mediated photothermal effect … 29 2.2.5 NIR light mediated singlet oxygen generation… 29 2.2.6 Photothermal conversion Efficiency of B2Se3 NPs/PEI… 30 2.2.7 NIR light mediated antibacterial activity… 31 2.2.8 Electron microscopy measurement… 32 2.2.9 Fluorescence Assay… 32 2.3 Results and Discussion… 33 2.3.1 Optimization of preparation conditions… 33 2.3.2 Characterization of Bi2Se3 NPs and Bi2Se3 NPs/PEI… 33 2.3.3 NIR light mediated properties… 35 2.3.4 NIR light mediated dual modal antibacterial activity… 36 2.4 Conclusions… 38 2.5 References… 39 2.5 Figures and Tables… 45 Chapter 3 [Near Infrared Light Activatable PEI-Wrapped Bismuth Selenide Nanocomposites as phototcatalyst for Dye Degradation] 60 3.1 Background and Introduction … 60 3.1.1 Introduction… 60 3.1.2 Photocatalytic dye treatment … 62 3.1.3 Basic principles and mechanism for photodegradation of dyes.. 63 3.1.4 Photocatalytic agents… 65 3.2 Methods and experiments… 65 3.2.1 Assessment of photocatalytic activity… 65 3.2.2 The photocatalytic stability test… 67 3.3 Results and Discussion… 67 3.3.1 Photocatalytic degradation of MB and RhB… 67 3.4 Conclusions… 70 3.5 References… 71 3.6 Figures and tables… 78 Chapter 4 [Low dimensional Bi2Se3 NPs-graphene oxide hybrid composite-modified electrodes for selective simultaneous determination of L-Dopa and acetaminophen in presence of ascorbic acid] 84 4.1 Introduction… 84 4.2 Methods and experiments… 87 4.2.1 Chemicals and reagents… 87 4.2.2 Characterization… 88 4.2.3 Synthesis of GO, Bi2Se3 NPs and Bi2Se3/GO composite… 89 4.2.4 Preparation of stock solutions… 90 4.2.5 Preparation of ACT and LD real samples and synthetic urine samples… 91 4.2.6 Preparation of Working Electrodes… 91 4.2.7 Procedure for the electrochemical measurements with biosensors.. 92 4.3 Results and Discussion… 93 4.3.1 Characterization of GO, Bi2Se3NPs and GO/Bi2Se3NPs nanocomposite… 95 4.3.2 Optimization of solution pH and accumulation time… 97 4.3.3 Electrochemical characterization of the developed sensor and LD, ACT behavior to Bi2Se3 NPs/GO/Pt… 97 4.3.4 DPV method for quantitative determination of LD and ACT… 101 4.3.5 Validation of the developed method… 103 4.3.6 Analytical applications… 104 4.4 Conclusions… 105 4.5 References… 106 4.6 Figures and Tables… 117 Chapter 5 [Simple and short time synthesis of Graphene oxide quantum dots for in vitro and in vivo toxicity and fluorescence imaging] 129 5.1 Introduction… 129 5.2 Methods and experiments… 132 5.2.1 Materials and reagents… 132 5.2.2 Apparatus… 133 5.2.3 Synthesis of GOQDs… 133 5.2.4 Determination of the fluorescence quantum yields of GOQDs.. 134 5.2.5 Biocompatibility assays… 134 5.2.6 In vitro bioimaging of GOQDs using confocal laser scanning microscopy (CLSM)… 135 5.2.7 In vivo biocompatibility and fluorescence imaging of GOQDs in zebrafish… 135 5.3 Results and Discussion… 136 5.3.1 Synthesis and characterization of GOQDs… 136 5.3.2 Optical properties of GOQDs… 138 5.3.3 Biocompatibility and cell imaging of GOQDs… 138 5.3.4 In vivo biocompatibility … 139 5.3.5 In vivo bio-imaging of the as-prepared GOQDs… 139 5.4 Conclusions… 140 5.5 References… 141 5.6 Figures and Tables… 150 Chapter 6 Summary… 160

    Chapter 1
    References

    1. Srivatsan, T. S., Nanomaterials: Synthesis, Properties, and Applications, A. S. Edelstein and R. C. Cammarata, Editors. Materials and Manufacturing Processes 2012, 27 (10), 1145-1145.
    2. Zhang, Z.; Lagally, M. G., Atomistic Processes in the Early Stages of Thin-Film Growth. Science 1997, 276 (5311), 377.
    3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666.
    4. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008, 8 (10), 3498-3502.
    5. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201.
    6. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320 (5881), 1308.
    7. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008, 8 (3), 902-907.
    8. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385.
    9. Chhowalla, M.; Liu, Z.; Zhang, H., Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews 2015, 44 (9), 2584-2586.
    10. Huang, X.; Zeng, Z.; Zhang, H., Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews 2013, 42 (5), 1934-1946.
    11. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5, 263.
    12. Xu, M.; Liang, T.; Shi, M.; Chen, H., Graphene-Like Two-Dimensional Materials. Chemical Reviews 2013, 113 (5), 3766-3798.
    13. Lin, Y.; Williams, T. V.; Connell, J. W., Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters 2010, 1 (1), 277-283.
    14. Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D., Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials 2009, 21 (28), 2889-2893.
    15. Wang, Q.; O’Hare, D., Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews 2012, 112 (7), 4124-4155.
    16. Osada, M.; Sasaki, T., Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry 2009, 19 (17), 2503-2511.
    17. Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R., Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science 2011, 332 (6026), 228.
    18. Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W., Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346 (6215), 1356.
    19. Fan, Z.; Huang, X.; Tan, C.; Zhang, H., Thin metal nanostructures: synthesis, properties and applications. Chemical Science 2015, 6 (1), 95-111.
    20. Kory, M. J.; Wörle, M.; Weber, T.; Payamyar, P.; van de Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schlüter, A. D., Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nature Chemistry 2014, 6, 779.
    21. Liu, H.; Du, Y.; Deng, Y.; Ye, P. D., Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews 2015, 44 (9), 2732-2743.
    22. Naguib, M.; Mochalin Vadym, N.; Barsoum Michel, W.; Gogotsi, Y., 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Advanced Materials 2013, 26 (7), 992-1005.
    23. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B., Epitaxial growth of a silicene sheet. Applied Physics Letters 2010, 97 (22), 223109.
    24. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science 2013, 340 (6139).
    25. Dines, M. B., Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Materials Research Bulletin 1975, 10 (4), 287-291.
    26. Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T., Synthesis, Anion Exchange, and Delamination of Co−Al Layered Double Hydroxide:  Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies. Journal of the American Chemical Society 2006, 128 (14), 4872-4880.
    27. Choucair, M.; Thordarson, P.; Stride, J. A., Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology 2008, 4, 30.
    28. Zhang, Y.; Zhang, L.; Zhou, C., Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research 2013, 46 (10), 2329-2339.
    29. Ham, H.; Park, N.-H.; Kang, I.; Kim, H. W.; Shim, K. B., Catalyst-free fabrication of graphene nanosheets without substrates using multiwalled carbon nanotubes and a spark plasma sintering process. Chemical Communications 2012, 48 (53), 6672-6674.
    30. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4 (3), 1321-1326.
    31. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6, 183.
    32. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American Chemical Society 2008, 130 (33), 10876-10877.
    33. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007, 6, 652.
    34. Mooser, E.; Pearson, W. B., New Semiconducting Compounds. Physical Review 1956, 101 (1), 492-493.
    35. Rayman, M. P., Selenium in cancer prevention: a review of the evidence and mechanism of action. Proceedings of the Nutrition Society 2007, 64 (4), 527-542.
    36. Kinsella Joseph, M.; Jimenez Rebecca, E.; Karmali Priya, P.; Rush Anthony, M.; Kotamraju, V. R.; Gianneschi Nathan, C.; Ruoslahti, E.; Stupack, D.; Sailor Michael, J., X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles. Angewandte Chemie International Edition 2011, 50 (51), 12308-12311.
    37. Sun, Z.; Liufu, S.; Chen, X.; Chen, L., Controllable synthesis and electrochemical hydrogen storage properties of Bi2Se3 architectural structures. Chemical Communications 2010, 46 (18), 3101-3103.
    38. Xu, H.; Chen, G.; Jin, R.; Chen, D.; Wang, Y.; Pei, J., Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Advances 2014, 4 (17), 8922-8929.
    39. Shao, J.; Xie, H.; Wang, H.; Zhou, W.; Luo, Q.; Yu, X.-F.; Chu, P. K., 2D Material-Based Nanofibrous Membrane for Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2018, 10 (1), 1155-1163.
    40. Zhou, H.; Che, L.; Guo, Z.; Wu, M.; Li, W.; Xu, W.; Liu, L., Bacteria-Mediated Ultrathin Bi2Se3 Nanosheets Fabrication and Their Application in Photothermal Cancer Therapy. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 4863-4870.
    41. Zhang, X.-D.; Chen, J.; Min, Y.; Park Gyeong, B.; Shen, X.; Song, S.-S.; Sun, Y.-M.; Wang, H.; Long, W.; Xie, J.; Gao, K.; Zhang, L.; Fan, S.; Fan, F.; Jeong, U., Metabolizable Bi2Se3 Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. Advanced Functional Materials 2013, 24 (12), 1718-1729.
    42. Gorle, G.; Bathinapatla, A.; Chen, Y.-Z.; Ling, Y.-C., Near infrared light activatable PEI-wrapped bismuth selenide nanocomposites for photothermal/photodynamic therapy induced bacterial inactivation and dye degradation. RSC Advances 2018, 8 (35), 19827-19834.
    43. Han, G.; Chen, Z.-G.; Ye, D.; Yang, L.; Wang, L.; Drennan, J.; Zou, J., In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. Journal of Materials Chemistry A 2014, 2 (19), 7109-7116.
    44. Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Xu, J.; Weng, J., Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi2Se3 Nanosheets. ACS Applied Materials & Interfaces 2017, 9 (8), 6931-6940.
    45. Mao, F.; Guo, J.; Zhang, S.; Yang, F.; Sun, Q.; Ma, J.; Li, Z., Solvothermal synthesis and electrochemical properties of S-doped Bi2Se3 hierarchical microstructure assembled by stacked nanosheets. RSC Advances 2016, 6 (44), 38228-38232.
    46. Hong, S. S.; Kundhikanjana, W.; Cha, J. J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M. A.; Shen, Z.-X.; Cui, Y., Ultrathin Topological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy. Nano Letters 2010, 10 (8), 3118-3122.
    47. Liu, M.; Liu, F. Y.; Man, B. Y.; Bi, D.; Xu, X. Y., Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in selenium-rich atmosphere. Applied Surface Science 2014, 317, 257-261.
    48. Bansal, N.; Cho, M. R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Chen, J.; Wu, W.; Park, Y. D.; Oh, S., Transferring MBE-Grown Topological Insulator Films to Arbitrary Substrates and Metal–Insulator Transition via Dirac Gap. Nano Letters 2014, 14 (3), 1343-1348.
    49. Xu, H.; Chen, G.; Jin, R.; Chen, D.; Wang, Y.; Pei, J.; Zhang, Y.; Yan, C.; Qiu, Z., Microwave-assisted synthesis of Bi2Se3 ultrathin nanosheets and its electrical conductivities. CrystEngComm 2014, 16 (19), 3965-3970.
    50. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2 (3), 463-470.
    51. Liu, L.; Wang, L.; Gao, J.; Zhao, J.; Gao, X.; Chen, Z., Amorphous structural models for graphene oxides. Carbon 2012, 50 (4), 1690-1698.
    52. Yan, J.-A.; Xian, L.; Chou, M. Y., Structural and Electronic Properties of Oxidized Graphene. Physical Review Letters 2009, 103 (8), 086802.
    53. Yang, K.; Feng, L.; Shi, X.; Liu, Z., Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews 2013, 42 (2), 530-547.
    54. Yang, M.-Q.; Xu, Y.-J., Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons 2016, 1 (3), 185-200.
    55. Palanisamy, S.; Lee, H. F.; Chen, S.-M.; Thirumalraj, B., An electrochemical facile fabrication of platinum nanoparticle decorated reduced graphene oxide; application for enhanced electrochemical sensing of H2O2. RSC Advances 2015, 5 (128), 105567-105573.
    56. Hou, J.; Shao, Y.; Ellis, M. W.; Moore, R. B.; Yi, B., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics 2011, 13 (34), 15384-15402.
    57. Brodie, B. C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
    58. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 1898, 31 (2), 1481-1487.
    59. Hofmann, U.; König, E., Untersuchungen über Graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie 1937, 234 (4), 311-336.
    60. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.

    Chapter 2
    References
    1. Tsai, Y.-T.; Cheng, P.-C.; Pan, T.-M., Immunomodulating Activity of Lactobacillus paracasei subsp. paracasei NTU 101 in Enterohemorrhagic Escherichia coli O157H7-Infected Mice. Journal of Agricultural and Food Chemistry 2010, 58 (21), 11265-11272.
    2. Wang, Y.-W.; Fu, Y.-Y.; Wu, L.-J.; Li, J.; Yang, H.-H.; Chen, G.-N., Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B 2013, 1 (19), 2496-2501.
    3. Jeong, C. J.; Sharker, S. M.; In, I.; Park, S. Y., Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetaines for Rapid and Effective Antibacterial Activity. ACS Applied Materials & Interfaces 2015, 7 (18), 9469-9478.
    4. Chen, S.; Tang, F.; Tang, L.; Li, L., Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties. ACS Applied Materials & Interfaces 2017, 9 (24), 20895-20903.
    5. Jin, Y.; Deng, J.; Yu, J.; Yang, C.; Tong, M.; Hou, Y., Fe5C2 nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. Journal of Materials Chemistry B 2015, 3 (19), 3993-4000.
    6. Liu, X.; Yang, G.; Zhang, L.; Liu, Z.; Cheng, Z.; Zhu, X., Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale 2016, 8 (33), 15323-15339.
    7. Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M. J.; Pugliese, G.; De Donato, F.; Scotto D’Abbusco, M.; Meng, X.; Manna, L.; Meng, H.; Pellegrino, T., Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano 2015, 9 (2), 1788-1800.
    8. Ondera, T. J.; Hamme Ii, A. T., A gold nanopopcorn attached single-walled carbon nanotube hybrid for rapid detection and killing of bacteria. Journal of Materials Chemistry B 2014, 2 (43), 7534-7543.
    9. Gharatape, A.; Milani, M.; Rasta, S. H.; Pourhassan-Moghaddam, M.; Ahmadi-Kandjani, S.; Davaran, S.; Salehi, R., A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan). RSC Advances 2016, 6 (112), 110499-110510.
    10. Wu, M.-C.; Deokar, A. R.; Liao, J.-H.; Shih, P.-Y.; Ling, Y.-C., Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. ACS Nano 2013, 7 (2), 1281-1290.
    11. Sinha, M.; Gollavelli, G.; Ling, Y.-C., Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens. RSC Advances 2016, 6 (68), 63859-63866.
    12. Korupalli, C.; Huang, C.-C.; Lin, W.-C.; Pan, W.-Y.; Lin, P.-Y.; Wan, W.-L.; Li, M.-J.; Chang, Y.; Sung, H.-W., Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 2017, 116, 1-9.
    13. Rice, D. R.; Gan, H.; Smith, B. D., Bacterial imaging and photodynamic inactivation using zinc(ii)-dipicolylamine BODIPY conjugates. Photochemical & Photobiological Sciences 2015, 14 (7), 1271-1281.
    14. Lim, Z.; Cheng, J. L.; Lim, T. W.; Teo, E. G.; Wong, J.; George, S.; Kishen, A., Light activated disinfection: an alternative endodontic disinfection strategy. Australian Dental Journal 2009, 54 (2), 108-114.
    15. Ristic, B. Z.; Milenkovic, M. M.; Dakic, I. R.; Todorovic-Markovic, B. M.; Milosavljevic, M. S.; Budimir, M. D.; Paunovic, V. G.; Dramicanin, M. D.; Markovic, Z. M.; Trajkovic, V. S., Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 2014, 35 (15), 4428-4435.
    16. Rengifo-Herrera, J. A.; Sanabria, J.; Machuca, F.; Dierolf, C. F.; Pulgarin, C.; Orellana, G., A Comparison of Solar Photocatalytic Inactivation of Waterborne E. coli Using Tris (2,2′-bipyridine)ruthenium(II), Rose Bengal, and TiO2. Journal of Solar Energy Engineering 2005, 129 (1), 135-140.
    17. Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang Kuo, C., Photosensitization of Singlet Oxygen and In Vivo Photodynamic Therapeutic Effects Mediated by PEGylated W18O49 Nanowires. Angewandte Chemie International Edition 2013, 52 (47), 12332-12336.
    18. Gollavelli, G.; Ling, Y.-C., Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 2014, 35 (15), 4499-4507.
    19. Huang, X.; Chen, G.; Pan, J.; Chen, X.; Huang, N.; Wang, X.; Liu, J., Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. Journal of Materials Chemistry B 2016, 4 (37), 6258-6270.
    20. Yang, S.-D.; Yang, L.; Zheng, Y.-X.; Zhou, W.-J.; Gao, M.-Y.; Wang, S.-Y.; Zhang, R.-J.; Chen, L.-Y., Structure-Dependent Optical Properties of Self-Organized Bi2Se3 Nanostructures: From Nanocrystals to Nanoflakes. ACS Applied Materials & Interfaces 2017, 9 (34), 29295-29301.
    21. Das, B.; Das, N. S.; Sarkar, S.; Chatterjee, B. K.; Chattopadhyay, K. K., Topological Insulator Bi2Se3/Si-Nanowire-Based p–n Junction Diode for High-Performance Near-Infrared Photodetector. ACS Applied Materials & Interfaces 2017, 9 (27), 22788-22798.
    22. Zhang, X. D.; Chen, J.; Min, Y.; Park Gyeong, B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J.; Gao, K.; Zhang, L.; Fan, S.; Fan, F.; Jeong, U., Metabolizable Bi2Se3 Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. Advanced Functional Materials 2013, 24 (12), 1718-1729.
    23. Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z., Perfluorocarbon‐Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near‐Infrared Light to Enhance the Radiotherapy of Cancer. Advanced Materials 2016, 28 (14), 2716-2723.
    24. Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics 2009, 5, 438.
    25. Gibney Katherine, A.; Sovadinova, I.; Lopez Analette, I.; Urban, M.; Ridgway, Z.; Caputo Gregory, A.; Kuroda, K., Poly(ethylene imine)s as Antimicrobial Agents with Selective Activity. Macromolecular Bioscience 2012, 12 (9), 1279-1289.
    26. Maria Nithya, J. S.; Pandurangan, A., Aqueous dispersion of polymer coated boron nitride nanotubes and their antibacterial and cytotoxicity studies. RSC Advances 2014, 4 (60), 32031-32046.
    27. Taranejoo, S.; Liu, J.; Verma, P.; Hourigan, K., A review of the developments of characteristics of PEI derivatives for gene delivery applications. Journal of Applied Polymer Science 2015, 132 (25).
    28. Jager, M.; Schubert, S.; Ochrimenko, S.; Fischer, D.; Schubert, U. S., Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society Reviews 2012, 41 (13), 4755-4767.
    29. Dun, C.; Hewitt, C. A.; Huang, H.; Xu, J.; Montgomery, D. S.; Nie, W.; Jiang, Q.; Carroll, D. L., Layered Bi2Se3 Nanoplate/Polyvinylidene Fluoride Composite Based n-type Thermoelectric Fabrics. ACS Applied Materials & Interfaces 2015, 7 (13), 7054-7059.
    30. Bhana, S.; Lin, G.; Wang, L.; Starring, H.; Mishra, S. R.; Liu, G.; Huang, X., Near-Infrared-Absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplified Photothermal and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces 2015, 7 (21), 11637-11647.
    31. Guozhi, J.; Peng, W.; Yanbang, Z.; Kai, C., Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers. Scientific Reports 2016, 6, 25884.
    32. Xiao, Z.; Jiang, X.; Li, B.; Liu, X.; Huang, X.; Zhang, Y.; Ren, Q.; Luo, J.; Qin, Z.; Hu, J., Hydrous RuO2 nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo. Nanoscale 2015, 7 (28), 11962-11970.
    33. Zhang, J.; Peng, Z.; Soni, A.; Zhao, Y.; Xiong, Y.; Peng, B.; Wang, J.; Dresselhaus, M. S.; Xiong, Q., Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets. Nano Letters 2011, 11 (6), 2407-2414.
    34. Kim, S. H.; Kang, E. B.; Jeong, C. J.; Sharker, S. M.; In, I.; Park, S. Y., Light Controllable Surface Coating for Effective Photothermal Killing of Bacteria. ACS Applied Materials & Interfaces 2015, 7 (28), 15600-15606.
    35. Akhavan, O.; Ghaderi, E.; Esfandiar, A., Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. The Journal of Physical Chemistry B 2011, 115 (19), 6279-6288.
    36. Ju, E.; Li, Z.; Li, M.; Dong, K.; Ren, J.; Qu, X., Functional polypyrrole-silica composites as photothermal agents for targeted killing of bacteria. Chemical Communications 2013, 49 (79), 9048-9050.

    Chapter 3
    References

    1. Wang, Y.-W.; Fu, Y.-Y.; Wu, L.-J.; Li, J.; Yang, H.-H.; Chen, G.-N., Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B 2013, 1 (19), 2496-2501.
    2. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.
    3. American Association of Textile, C.; Colorists, Textile chemist and colorist & American dyestuff reporter. Chemist and colorist & dyestuff reporter 1999, 2 v.
    4. Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental 2004, 49 (1), 1-14.
    5. Kant, R., Textile dyeing industry an environmental hazard. Natural Science 2012, Vol.04No.01, 5.
    6. Anliker, R., Ecotoxicology of dyestuffs—A joint effort by industry. Ecotoxicology and Environmental Safety 1979, 3 (1), 59-74.
    7. Carliell-Marquet, C.; Barclay, S. J.; Buckley, C., Treatment of exhausted reactive dyebath effluent using anaerobic digestion: Laboratory and full-scale trials. ISSN 1996; Vol. 22 (3), p 225-233.
    8. Willmott, N.; Guthrie, J.; Nelson, G., The biotechnology approach to colour removal from textile effluent. Journal of the Society of Dyers and Colourists 2008, 114 (2), 38-41.
    9. Senthilkumar, M.; Muthukumar, M., Studies on the possibility of recycling reactive dye bath effluent after decolouration using ozone. Dyes and Pigments 2007, 72 (2), 251-255.
    10. Baughman George, L.; Perenich Theresa, A., Fate of dyes in aquatic systems: I. Solubility and partitioning of some hydrophobic dyes and related compounds. Environmental Toxicology and Chemistry 1988, 7 (3), 183-199.
    11. Bali, U.; Çatalkaya, E.; Şengül, F., Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. Journal of Hazardous Materials 2004, 114 (1), 159-166.
    12. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001, 77 (3), 247-255.
    13. Prado, A. G. S.; Bolzon, L. B.; Pedroso, C. P.; Moura, A. O.; Costa, L. L., Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental 2008, 82 (3), 219-224.
    14. Cassano, A.; Molinari, R.; Romano, M.; Drioli, E., Treatment of aqueous effluents of the leather industry by membrane processes: A review. Journal of Membrane Science 2001, 181 (1), 111-126.
    15. Crini, G., Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology 2006, 97 (9), 1061-1085.
    16. Pérez-Urquiza, M.; Beltrán, J. L., Determination of dyes in foodstuffs by capillary zone electrophoresis. Journal of Chromatography A 2000, 898 (2), 271-275.
    17. Hueber-Becker, F.; Nohynek, G. J.; Dufour, E. K.; Meuling, W. J. A.; de Bie, A. T. H. J.; Toutain, H.; Bolt, H. M., Occupational exposure of hairdressers to [14C]-para-phenylenediamine-containing oxidative hair dyes: A mass balance study. Food and Chemical Toxicology 2007, 45 (1), 160-169.
    18. Wróbel, D.; Boguta, A.; Ion, R. M., Mixtures of synthetic organic dyes in a photoelectrochemical cell. Journal of Photochemistry and Photobiology A: Chemistry 2001, 138 (1), 7-22.
    19. Yang, L.; Lin, Y.; Jia, J.; Xiao, X.; Li, X.; Zhou, X., Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources 2008, 182 (1), 370-376.
    20. Nilsson, R.; Nordlinder, R.; Wass, U.; Meding, B.; Belin, L., Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. British Journal of Industrial Medicine 1993, 50 (1), 65.
    21. Pizarro, P.; Guillard, C.; Perol, N.; Herrmann, J. M., Photocatalytic degradation of imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts. Catalysis Today 2005, 101 (3), 211-218.
    22. Yates, H. M.; Nolan, M. G.; Sheel, D. W.; Pemble, M. E., The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179 (1), 213-223.
    23. Horikoshi, S.; Shirasaka, Y.; Uchida, H.; Horikoshi, N.; Serpone, N., Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities. Photochemical & Photobiological Sciences 2016, 15 (8), 1061-1070.
    24. Riaz, N.; Chong, F. K.; Man, Z. B.; Sarwar, R.; Farooq, U.; Khan, A.; Khan, M. S., Preparation, characterization and application of Cu-Ni/TiO2 in Orange II photodegradation under visible light: effect of different reaction parameters and optimization. RSC Advances 2016, 6 (60), 55650-55665.
    25. Qin, W.; Zhang, D.; Zhao, D.; Wang, L.; Zheng, K., Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles. Chemical Communications 2010, 46 (13), 2304-2306.
    26. Chen, L.-C.; Chou, T.-C., Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst. Industrial & Engineering Chemistry Research 1994, 33 (6), 1436-1443.
    27. Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N., Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation:  A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism. The Journal of Physical Chemistry B 2002, 106 (2), 318-324.
    28. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental 2002, 39 (1), 75-90.
    29. Akpan, U. G.; Hameed, B. H., Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials 2009, 170 (2), 520-529.
    30. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95 (1), 69-96.
    31. Saien, J.; Soleymani, A. R., Feasibility of using a slurry falling film photo-reactor for individual and hybridized AOPs. Journal of Industrial and Engineering Chemistry 2012, 18 (5), 1683-1688.
    32. Zhong, X.; Dai, Z.; Qin, F.; Li, J.; Yang, H.; Lu, Z.; Liang, Y.; Chen, R., Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment. RSC Advances 2015, 5 (85), 69312-69318.
    33. Ju, P.; Wang, Y.; Sun, Y.; Zhang, D., Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Transactions 2016, 45 (11), 4588-4602.
    34. Salabat, A.; Mirhoseini, F., Applications of a new type of poly(methyl methacrylate)/TiO2 nanocomposite as an antibacterial agent and a reducing photocatalyst. Photochemical & Photobiological Sciences 2015, 14 (9), 1637-1643.
    35. Booshehri, A. Y.; Chun-Kiat Goh, S.; Hong, J.; Jiang, R.; Xu, R., Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. Journal of Materials Chemistry A 2014, 2 (17), 6209-6217.
    36. Xu, Y.; Huang, S.; Ji, H.; Jing, L.; He, M.; Xu, H.; Zhang, Q.; Li, H., Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability. RSC Advances 2016, 6 (9), 6905-6914.
    37. Liu, W.-X.; Zhu, X.-L.; Liu, S.-Q.; Gu, Q.-Q.; Meng, Z.-D., Near-Infrared-Driven Selective Photocatalytic Removal of Ammonia Based on Valence Band Recognition of an α-MnO2/N-Doped Graphene Hybrid Catalyst. ACS Omega 2018, 3 (5), 5537-5546.
    38. Tang, Y.; Di, W.; Zhai, X.; Yang, R.; Qin, W., NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles. ACS Catalysis 2013, 3 (3), 405-412.
    39. Luo, B.; Xu, D.; Li, D.; Wu, G.; Wu, M.; Shi, W.; Chen, M., Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Applied Materials & Interfaces 2015, 7 (31), 17061-17069.
    40. Legrini, O.; Oliveros, E.; Braun, A. M., Photochemical processes for water treatment. Chemical Reviews 1993, 93 (2), 671-698.
    41. Liu, L.; Liu, J.; Sun, D. D., Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catalysis Science & Technology 2012, 2 (12), 2525-2532.
    42. Kumar, S. G.; Rao, K. S. R. K., Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances 2015, 5 (5), 3306-3351.
    43. Xia, W.; Mei, C.; Zeng, X.; Fan, G.; Lu, J.; Meng, X.; Shen, X., Nanoplate-Built ZnO Hollow Microspheres Decorated with Gold Nanoparticles and Their Enhanced Photocatalytic and Gas-Sensing Properties. ACS Applied Materials & Interfaces 2015, 7 (22), 11824-11832.
    44. Yang, F.; Yan, N.-N.; Huang, S.; Sun, Q.; Zhang, L.-Z.; Yu, Y., Zn-Doped CdS Nanoarchitectures Prepared by Hydrothermal Synthesis: Mechanism for Enhanced Photocatalytic Activity and Stability under Visible Light. The Journal of Physical Chemistry C 2012, 116 (16), 9078-9084.
    45. Guerrero, M.; Altube, A.; García-Lecina, E.; Rossinyol, E.; Baró, M. D.; Pellicer, E.; Sort, J., Facile in Situ Synthesis of BiOCl Nanoplates Stacked to Highly Porous TiO2: A Synergistic Combination for Environmental Remediation. ACS Applied Materials & Interfaces 2014, 6 (16), 13994-14000.
    46. Saison, T.; Chemin, N.; Chanéac, C.; Durupthy, O.; Mariey, L.; Maugé, F.; Brezová, V.; Jolivet, J.-P., New Insights Into BiVO4 Properties as Visible Light Photocatalyst. The Journal of Physical Chemistry C 2015, 119 (23), 12967-12977.
    47. Wang, Z.; Jiang, C.; Huang, R.; Peng, H.; Tang, X., Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method. The Journal of Physical Chemistry C 2014, 118 (2), 1155-1160.

    Chapter 4
    References

    1. Castro Caldas, A.; Teodoro, T.; Ferreira, J. J., The launch of opicapone for Parkinson's disease: negatives versus positives. Expert Opin Drug Saf 2018, 17 (3), 331-337.
    2. Movlaee, K.; Beitollahi, H.; Ganjali, M. R.; Norouzi, P., Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchimica Acta 2017, 184 (9), 3281-3289.
    3. Mantena, B. P. V.; Rao, S. V.; Rao, K. M. C. A.; Ramakrishna, K.; Reddy, R. S., Rapid Separation Technique for the Determination of Potential Impurities Present in Levodopa, Carbidopa, and Entacapone in Fixed Dose Combination Drug Product Using Trifunctionally Bonded Phase Ethylene Bridged Sorbent Column with Smaller Ion-Pair Reagent. Journal of Liquid Chromatography & Related Technologies 2015, 38 (10), 1073-1087.
    4. César, I. d. C.; Byrro, R. M. D.; de Santana e Silva Cardoso, F. F.; Mundim, I. M.; de Souza Teixeira, L.; Pontes da Silva, E.; Gomes, S. A.; Bonfim, R. R.; Pianetti, G. A., Simultaneous quantitation of levodopa and 3-O-methyldopa in human plasma by HPLC–ESI-MS/MS: Application for a pharmacokinetic study with a levodopa/benserazide formulation. Journal of Pharmaceutical and Biomedical Analysis 2011, 56 (5), 1094-1100.
    5. F. Martins, H.; Pinto, D.; de A. Nascimento, V.; A. S. Marques, M.; Amendoeira, F., Determination of levodopa in human plasma by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS): Application to a bioequivalence study. Química Nova, 2013; Vol. 36, p 171-176.
    6. Yue, H. Y.; Zhang, H.; Huang, S.; Lin, X. Y.; Gao, X.; Chang, J.; Yao, L. H.; Guo, E. J., Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 2017, 89 (Pt 1), 592-597.
    7. Pistonesi, M.; Centurion, M. E.; Fernandez Band, B. S.; Damiani, P. C.; Olivieri, A. C., Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J Pharm Biomed Anal 2004, 36 (3), 541-7.
    8. Marcolino-Júnior, L. H.; Teixeira, M. F. S.; Pereira, A. V.; Fatibello-Filho, O., Flow Injection Determination of levodopa in tablets using a solid-phase reactor containing lead(IV) dioxide immobilized. Journal of Pharmaceutical and Biomedical Analysis 2001, 25 (3), 393-398.
    9. Hansson, C.; Agrup, G.; Rorsman, H.; Rosengren, A. M.; Rosengren, E.; Edholm, L. E., Analysis of cysteinyldopas, dopa, dopamine, noradrenaline and adrenaline in serum and urine using high-performance liquid chromatography and electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications 1979, 162 (1), 7-22.
    10. He, W. W.; Zhou, X. W.; Lu, J. Q., Simultaneous determination of benserazide and levodopa by capillary electrophoresis-chemiluminescence using an improved interface. J Chromatogr A 2006, 1131 (1-2), 289-92.
    11. Wongwan, S.; Hammitzsch-Wiedemann, M.; Scriba, G. K., Determination of related substances of levodopa including the R-enantiomer by CE. Electrophoresis 2009, 30 (22), 3891-6.
    12. Sandulescu, R.; Mirel, S.; Oprean, R., The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms. J Pharm Biomed Anal 2000, 23 (1), 77-87.
    13. Doǧan, H. N.; Duran, A., Simultaneous spectrophotometric determination of aspirin, acetaminophen and ascorbic acid in pharmaceutical preparations. Article in Pharmazie 1998; Vol. 53, p 781-784.
    14. Nebot, C.; Gibb, S. W.; Boyd, K. G., Quantification of human pharmaceuticals in water samples by high performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2007, 598 (1), 87-94.
    15. Soh, C. S.; Raveendran, P. In Multi-resolution Analysis of Near Infrared Spectroscopic Data for Calibration and Prediction of Active Substances in Phosphate Buffer Solution. Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 415-418.
    16. Vilchez, J. L.; Blanc, R.; Avidad, R.; Navalon, A., Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. J Pharm Biomed Anal 1995, 13 (9), 1119-25.
    17. Vilchez, J.; Blanc, R.; Avidad, R.; Navalón, A., Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. Journal of Pharmaceutical and Biomedical Analysis 1995, 13 (9), 1119-1125.
    18. Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.; Galera, R., Migration behaviour and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen. J Pharm Biomed Anal 2005, 38 (1), 87-93.
    19. Rezaei, B.; Shams-Ghahfarokhi, L.; Havakeshian, E.; Ensafi, A. A., An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 2016, 158, 42-50.
    20. Fouladgar, M.; Karimi-Maleh, H.; Gupta, V. K., Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. Journal of Molecular Liquids 2015, 208, 78-83.
    21. Kamyabi, M. A.; Rahmanian, N., An electrochemical sensing method for the determination of levodopa using a poly(4-methyl-ortho-phenylenediamine)/MWNT modified GC electrode. Analytical Methods 2015, 7 (4), 1339-1348.
    22. Raoof, J. B.; Ojani, R.; Amiri-Aref, M.; Baghayeri, M., Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sensors and Actuators B: Chemical 2012, 166-167, 508-518.
    23. Xu, Y.; Lei, W.; Su, J.; Hu, J.; Yu, X.; Zhou, T.; Yang, Y.; Mandler, D.; Hao, Q., A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. Electrochimica Acta 2018, 259, 994-1003.
    24. Cao, F.; Dong, Q.; Li, C.; Chen, J.; Ma, X.; Huang, Y.; Song, D.; Ji, C.; Lei, Y., Electrochemical sensor for detecting pain reliever/fever reducer drug acetaminophen based on electrospun CeBiOx nanofibers modified screen-printed electrode. Sensors and Actuators B: Chemical 2018, 256, 143-150.
    25. Kim, D.; Kim, J. M.; Jeon, Y.; Lee, J.; Oh, J.; Hooch Antink, W.; Kim, D.; Piao, Y., Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sensors and Actuators B: Chemical 2018, 259, 50-58.
    26. Yang, H., Fabrication of Electrochemical Sensor for Acetaminophen Based on Levodopa Polymer and Multi-walled Carbon Nanotubes Complex. International journal of electrochemical science 2017; Vol. 12, p 11089-11101.
    27. Babaei, A.; Sohrabi, M., Selective simultaneous determination of levodopa and acetaminophen in the presence of ascorbic acid using a novel TiO2 hollow sphere/multi-walled carbon nanotube/poly-aspartic acid composite modified carbon paste electrode. Analytical Methods 2016, 8 (5), 1135-1144.
    28. Baghayeri, M.; Namadchian, M., Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: Application to the analysis of some real samples. Electrochimica Acta 2013, 108, 22-31.
    29. Babaei, A.; Sohrabi, M.; Taheri, A. R., Highly sensitive simultaneous determination of l-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes. Journal of Electroanalytical Chemistry 2013, 698, 45-51.
    30. Mazloum-Ardakani, M.; Ahmadi, S. H.; Safaei Mahmoudabadi, Z.; Khoshroo, A., Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 2016, 91, 162-167.
    31. Zhang, Z.; Fu, X.; Li, K.; Liu, R.; Peng, D.; He, L.; Wang, M.; Zhang, H.; Zhou, L., One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II). Sensors and Actuators B: Chemical 2016, 225, 453-462.
    32. Bathinapatla, A.; Kanchi, S.; Singh, P.; Sabela, M. I.; Bisetty, K., An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A. Biosensors and Bioelectronics 2016, 77, 116-123.
    33. Mahdavi, M.; Rahmani, F.; Nouranian, S., Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. Journal of Materials Chemistry B 2016, 4 (46), 7441-7451.
    34. Zhou, T.; Wang, Q.; Umar, A.; Xu, F.; Gao, Y.; Wu, J.; Zhang, Z.; Yang, R.; Wang, J.; Huang, L.; Lu, P.; Guo, Z., Electrochemical Sensors Based on Semiconductor Nanostructures Modified Electrodes. Science of Advanced Materials 2015, 7 (10), 2069-2083.
    35. Serrano, N.; alberich, A.; Díaz-Cruz, J.; Ariño, C.; Esteban, M., Coating methods, modifiers and applications of bismuth screen-printed electrodes. 2013; Vol. 46, p 15-29.
    36. Wang, J.; Lu, J.; Hocevar, S. B.; Farias, P. A. M.; Ogorevc, B., Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Analytical Chemistry 2000, 72 (14), 3218-3222.
    37. Lezi, N.; Economou, A.; Dimovasilis, P. A.; Trikalitis, P. N.; Prodromidis, M. I., Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb(II) and Cd(II). Analytica Chimica Acta 2012, 728, 1-8.
    38. Khairy, M.; Kadara Rashid , O.; Kampouris Dimitrios , K.; Banks Craig , E., Disposable Bismuth Oxide Screen Printed Electrodes for the Sensing of Zinc in Seawater. Electroanalysis 2010, 22 (13), 1455-1459.
    39. Lezi, N.; Kokkinos, C.; Economou, A.; Prodromidis, M., Voltammetric determination of trace Tl(I) at disposable screen-printed electrodes modified with bismuth precursor compounds. Sensors and Actuators B: Chemical 2013; Vol. 182, p 718–724.
    40. Hwang, G.-H.; Han, W.-K.; Park, J.-S.; Kang, S.-G., An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sensors and Actuators B: Chemical 2008; Vol. 135, p 309-316.
    41. Kadara, R. O.; Tothill, I. E., Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Analytica Chimica Acta 2008, 623 (1), 76-81.
    42. Sopha, H.; Baldrianová, L.; Tesařová, E.; Grincienė, G.; Weidlich, T.; Švancara, I.; Hočevar Samo , B., A New Type of Bismuth Electrode for Electrochemical Stripping Analysis Based on the Ammonium Tetrafluorobismuthate Bulk-Modified Carbon Paste. Electroanalysis 2010, 22 (13), 1489-1493.
    43. Dimovasilis, P. A.; Prodromidis, M. I., Bismuth-dispersed xerogel-based composite films for trace Pb(II) and Cd(II) voltammetric determination. Analytica Chimica Acta 2013, 769, 49-55.
    44. Dimovasilis, P. A.; Prodromidis, M. I., Preparation of Screen-Printed Compatible Bismuth-Modified Sol-Gel Microspheres: Application to the Stripping Voltammetric Determination of Lead and Cadmium. Analytical Letters 2016, 49 (7), 979-989.
    45. María-Hormigos, R.; Gismera, M. J.; Procopio, J. R.; Sevilla, M. T., Disposable screen-printed electrode modified with bismuth–PSS composites as high sensitive sensor for cadmium and lead determination. Journal of Electroanalytical Chemistry 2016, 767, 114-122.
    46. Baldrianova, L.; Agrafiotou, P.; Svancara, I.; Vytras, K.; Sotiropoulos, S., The determination of cysteine at Bi-powder carbon paste electrodes by cathodic stripping voltammetry. Electrochemistry Communications 2008, 10 (6), 918-921.
    47. Nigović, B.; Šimunić, B.; Hocevar, S., Voltammetric measurements of aminosalicylate drugs using bismuth film electrode. Electrochimica Acta 2009, 54 (24), 5678-5683.
    48. Sa, E.; Da Silva, P.; L. Jost, C.; Spinelli, A., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin). Sensors and Actuators B: Chemica 2015; Vol. 209.
    49. Riman, D.; Avgeropoulos, A.; Hrbac, J.; Prodromidis, M., Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochimica Acta 2015; Vol. 165, p 410-415.
    50. Riman, D.; Avgeropoulos, A.; Hrbac, J.; Prodromidis, M. I., Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochimica Acta 2015, 165, 410-415.
    51. Figueiredo-Filho Luiz Carlos, S.; Azzi Déborah, C.; Janegitz Bruno, C.; Fatibello-Filho, O., Determination of Atrazine in Natural Water Samples by Differential Pulse Adsorptive Stripping Voltammetry Using a Bismuth Film Electrode. Electroanalysis 2012, 24 (2), 303-308.
    52. de Figueiredo-Filho Luiz Carlos , S.; dos Santos Vagner , B.; Janegitz, B. C.; Guerreiro, T. B.; Fatibello-Filho, O.; Faria, R. C.; Marcolino-Junior, L. H., Differential Pulse Voltammetric Determination of Paraquat Using a Bismuth-Film Electrode. Electroanalysis 2010, 22 (11), 1260-1266.
    53. de Lima, C. A.; Spinelli, A., Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochimica Acta 2013, 107, 542-548.
    54. Lezi, N.; Economou, A.; Barek, J.; Prodromidis, M., Screen-Printed Disposable Sensors Modified with Bismuth Precursors for Rapid Voltammetric Determination of 3 Ecotoxic Nitrophenols. Electroanalysis 2014, 26 (4), 766-775.
    55. Riman, D.; Jirovsky, D.; Hrbac, J.; Prodromidis, M. I., Green and facile electrode modification by spark discharge: Bismuth oxide-screen printed electrodes for the screening of ultra-trace Cd(II) and Pb(II). Electrochemistry Communications 2015, 50, 20-23.
    56. Sopha, H.; Hocevar, S. B.; Pihlar, B.; Ogorevc, B., Bismuth film electrode for stripping voltammetric measurement of sildenafil citrate. Electrochimica Acta 2012, 60, 274-277.
    57. Tseliou, F.; Avgeropoulos, A.; Falaras, P.; Prodromidis, M. I., Low dimensional Bi2Te3-graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and Cd(II). Electrochimica Acta 2017, 231, 230-237.
    58. Fernandes, A. M.; Abdalhai, M. H.; Ji, J.; Xi, B.-W.; Xie, J.; Sun, J.; Noeline, R.; Lee, B. H.; Sun, X., Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes–chitosan–bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosensors and Bioelectronics 2015, 63, 399-406.
    59. Zhu, Q.; Gao, F.; Yang, Y.; Zhang, B.; Wang, W.; Hu, Z.; Wang, Q., Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sensors and Actuators B: Chemical 2015, 207, 819-826.
    60. Cabrita, J. F.; Ferreira, V. C.; Monteiro, O. C., Titanate nanofibers sensitized with nanocrystalline Bi2S3 as new electrocatalytic materials for ascorbic acid sensor applications. Electrochimica Acta 2014, 135, 121-127.
    61. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
    62. Gorle, G.; Bathinapatla, A.; Chen, Y.-Z.; Ling, Y.-C., Near infrared light activatable PEI-wrapped bismuth selenide nanocomposites for photothermal/photodynamic therapy induced bacterial inactivation and dye degradation. RSC Advances 2018, 8 (35), 19827-19834.
    63. Deroco, P. B.; Vicentini, F. C.; Oliveira, G. G.; Rocha-Filho, R. C.; Fatibello-Filho, O., Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode. Journal of Electroanalytical Chemistry 2014, 719, 19-23.
    64. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    65. Sun, Z.; Liufu, S.; Chen, L., Synthesis and characterization of nanostructured bismuth selenide thin films. Dalton Transactions 2010, 39 (45), 10883-10887.
    66. Ghodsi, J.; Rafati, A. A.; Shoja, Y., First report on hemoglobin electrostatic immobilization on WO3 nanoparticles: application in the simultaneous determination of levodopa, uric acid, and folic acid. Analytical and Bioanalytical Chemistry 2016, 408 (14), 3899-3909.
    67. Teixeira, M. F. S.; Marcolino-Júnior, L. H.; Fatibello-Filho, O.; Dockal, E. R.; Bergamini, M. F., An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system. Sensors and Actuators B: Chemical 2007, 122 (2), 549-555.
    68. Aslanoglu, M.; Kutluay, A.; Goktas, S.; Karabulut, S., Voltammetric behaviour of levodopa and its quantification in pharmaceuticals using a β-cyclodextrine doped poly (2,5-diaminobenzenesulfonic acid) modified electrode. Journal of Chemical Sciences 2009, 121 (2), 209-215.
    69. Kemmegne-Mbouguen, J. C.; Toma, H. E.; Araki, K.; Constantino, V. R. L.; Ngameni, E.; Angnes, L., Simultaneous determination of acetaminophen and tyrosine using a glassy carbon electrode modified with a tetraruthenated cobalt(II) porphyrin intercalated into a smectite clay. Microchimica Acta 2016, 183 (12), 3243-3253.
    70. Liu, R.; Zeng, X.; Liu, J.; Luo, J.; Zheng, Y.; Liu, X., A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchimica Acta 2016, 183 (5), 1543-1551.
    71. Wang, S.-F.; Xie, F.; Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensors and Actuators B: Chemical 2007; Vol. 123, p 495-500.

    Chapter 5
    References
    1. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
    2. Croft, R. C., Lamellar compounds of graphite. Quarterly Reviews, Chemical Society 1960, 14 (1), 1-45.
    3. Chua, C. K.; Pumera, M., Covalent chemistry on graphene. Chemical Society Reviews 2013, 42 (8), 3222-3233.
    4. Huang, C.; Li, C.; Shi, G., Graphene based catalysts. Energy & Environmental Science 2012, 5 (10), 8848-8868.
    5. Yang, D.; Li, T.; Xu, M.; Gao, F.; Yang, J.; Yang, Z.; Le, W., Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine 2014, 9 (16), 2445-2455.
    6. Zhao, Q.; Zhou, Y.; Li, Y.; Gu, W.; Zhang, Q.; Liu, J., Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors. Analytical Chemistry 2016, 88 (3), 1892-1899.
    7. Zhang, Y.; Bai, Y.; Feng, F.; Shuang, S., A graphene oxide-based fluorescent aptasensor for alpha-fetoprotein detection. Analytical Methods 2016, 8 (32), 6131-6134.
    8. Wang, Y.; Li, Z.; Weber, T. J.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y., In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets. Analytical Chemistry 2013, 85 (14), 6775-6782.
    9. Tang, L.; Feng, H.; Cheng, J.; Li, J., Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chemical Communications 2010, 46 (32), 5882-5884.
    10. Dreyer, D. R.; Todd, A. D.; Bielawski, C. W., Harnessing the chemistry of graphene oxide. Chemical Society Reviews 2014, 43 (15), 5288-5301.
    11. Pattnaik, S.; Swain, K.; Lin, Z., Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B 2016, 4 (48), 7813-7831.
    12. Wu, K.; Hu, G.; Du, K.; Peng, Z.; Cao, Y., Improved electrochemical properties of LiFePO4/graphene/carbon composite synthesized from FePO4·2H2O/graphene oxide. Ceramics International 2015, 41 (10, Part A), 13867-13871.
    13. Khalid, N. R.; Ahmed, E.; Hong, Z.; Ahmad, M.; Zhang, Y.; Khalid, S., Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceramics International 2013, 39 (6), 7107-7113.
    14. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    15. Shin, H.-J.; Kim Ki, K.; Benayad, A.; Yoon, S.-M.; Park Hyeon, K.; Jung, I.-S.; Jin Mei, H.; Jeong, H.-K.; Kim Jong, M.; Choi, J.-Y.; Lee Young, H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19 (12), 1987-1992.
    16. Kim, M. C.; Hwang, G. S.; Ruoff, R. S., Epoxide reduction with hydrazine on graphene: A first principles study. The Journal of Chemical Physics 2009, 131 (6), 064704.
    17. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    18. Yeh, T.-F.; Huang, W.-L.; Chung, C.-J.; Chiang, I. T.; Chen, L.-C.; Chang, H.-Y.; Su, W.-C.; Cheng, C.; Chen, S.-J.; Teng, H., Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. The Journal of Physical Chemistry Letters 2016, 7 (11), 2087-2092.
    19. Favaro, M.; Carraro, F.; Cattelan, M.; Colazzo, L.; Durante, C.; Sambi, M.; Gennaro, A.; Agnoli, S.; Granozzi, G., Multiple doping of graphene oxide foams and quantum dots: new switchable systems for oxygen reduction and water remediation. Journal of Materials Chemistry A 2015, 3 (27), 14334-14347.
    20. Liu, Y.; Xu, M.; Zhu, X.; Xie, M.; Su, Y.; Hu, N.; Yang, Z.; Zhang, Y., Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 2014; Vol. 68, p 399–405.
    21. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials 2009, 22 (6), 734-738.
    22. Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; Wu, M., Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications 2014, 5, 5357.
    23. Poushali, D.; Madhuparna, B.; Sayan, G.; Subhadip, M.; Amit Kumar, D.; Susanta, B.; Narayan Chandra, D., Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 2017, 28 (19), 195501.
    24. Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications 2012, 48 (31), 3686-3699.
    25. Fernando, K. A. S.; Sahu, S.; Liu, Y.; Lewis, W. K.; Guliants, E. A.; Jafariyan, A.; Wang, P.; Bunker, C. E.; Sun, Y.-P., Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Applied Materials & Interfaces 2015, 7 (16), 8363-8376.
    26. Das, P.; Ganguly, S.; Mondal, S.; Bose, M.; Das, A. K.; Banerjee, S.; Das, N. C., Heteroatom doped photoluminescent carbon dots for sensitive detection of acetone in human fluids. Sensors and Actuators B: Chemical 2018, 266, 583-593.
    27. Ganguly, S.; Das, P.; Bose, M.; Mondal, S.; Das, A. K.; Das, N. C., Strongly blue-luminescent N-doped carbogenic dots as a tracer metal sensing probe in aqueous medium and its potential activity towards in situ Ag-nanoparticle synthesis. Sensors and Actuators B: Chemical 2017, 252, 735-746.
    28. Gonçalves, G.; Vila, M.; Bdikin, I.; de Andrés, A.; Emami, N.; Ferreira, R. A. S.; Carlos, L. D.; Grácio, J.; Marques, P. A. A. P., Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation. Scientific Reports 2014, 4, 6735.
    29. Routh, P.; Das, S.; Shit, A.; Bairi, P.; Das, P.; Nandi, A. K., Graphene Quantum Dots from a Facile Sono-Fenton Reaction and Its Hybrid with a Polythiophene Graft Copolymer toward Photovoltaic Application. ACS Applied Materials & Interfaces 2013, 5 (23), 12672-12680.
    30. Wang, Y.; Hu, A., Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C 2014, 2 (34), 6921-6939.
    31. Bai, J.-M.; Zhang, L.; Liang, R.-P.; Qiu, J.-D., Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chemistry – A European Journal 2013, 19 (12), 3822-3826.
    32. Gokus, T.; Nair, R. R.; Bonetti, A.; Böhmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A., Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009, 3 (12), 3963-3968.
    33. Gokhale, R.; Singh, P., Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging. Particle & Particle Systems Characterization 2013, 31 (4), 433-438.
    34. Pei, H.; Zhu, S.; Yang, M.; Kong, R.; Zheng, Y.; Qu, F., Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensors & bioelectronics 2015, 74, 909-914.
    35. Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S.-H.; Kim, D. H.; Seo, T. S., Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Analytical chemistry 2015, 87 (21), 10969-10975.
    36. Shi, Y.; Pramanik, A.; Tchounwou, C.; Pedraza, F.; Crouch, R. A.; Chavva, S. R.; Vangara, A.; Sinha, S. S.; Jones, S.; Sardar, D.; Hawker, C.; Ray, P. C., Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Applied Materials & Interfaces 2015, 7 (20), 10935-10943.
    37. Dong, Y.; Lin, J.; Chen, Y.; Fu, F.; Chi, Y.; Chen, G., Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 2014, 6 (13), 7410-7415.
    38. Ghosh, T.; Prasad, E., White-Light Emission from Unmodified Graphene Oxide Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (5), 2733-2742.
    39. Wei, J.; Qiu, J.; Ren, L.; Zhang, K.; Wang, S.; Weeks, B., Size Sorted Multicolor Fluorescence Graphene Oxide Quantum Dots Obtained by Differential Velocity Centrifugation. Science of Advanced Materials 2014, 6 (5), 1052-1059.
    40. Stengl, V.; Bakardjieva, S.; Henych, J.; Lang, K.; Kormunda, M., Blue and green luminescence of reduced graphene oxide quantum dots. Carbon 2013; Vol. 63, p 537-546.
    41. Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P., Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews 2014, 43 (20), 7067-7098.
    42. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42 (14), 2929-2937.
    43. Morales‐Narváez, E.; Merkoçi, A., Graphene Oxide as an Optical Biosensing Platform. Advanced Materials 2012, 24 (25), 3298-3308.
    44. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., Graphene‐Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7 (14), 1876-1902.
    45. Wang, L.; Ambrosi, A.; Pumera, M., Cover Picture: “Metal‐Free” Catalytic Oxygen Reduction Reaction on Heteroatom‐Doped Graphene is Caused by Trace Metal Impurities (Angew. Chem. Int. Ed. 51/2013). Angewandte Chemie International Edition 2013, 52 (51), 13479-13479.
    46. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society 2014, 136 (11), 4394-4403.
    47. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010, 39 (1), 228-240.
    48. Lu, Q.; Wu, C.; Liu, D.; Wang, H.; Su, W.; Li, H.; Zhang, Y.; Yao, S., A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chemistry 2017, 19 (4), 900-904.
    49. Li, L.; Daou, T. J.; Texier, I.; Kim Chi, T. T.; Liem, N. Q.; Reiss, P., Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials 2009, 21 (12), 2422-2429.
    50. Kalluru, P.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C., Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 2016, 95, 1-10.
    51. Gollavelli, G.; Ling, Y.-C., Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 2012, 33 (8), 2532-2545.
    52. Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology 2010, 44 (4), 1247-1253.
    53. Mukome, F. N. D.; Zhang, X.; Silva, L. C. R.; Six, J.; Parikh, S. J., Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks. Journal of Agricultural and Food Chemistry 2013, 61 (9), 2196-2204.
    54. Guo, Y.; Bustin, R. M., FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology 1998, 37 (1), 29-53.
    55. Mei, Q.; Chen, J.; Zhao, J.; Yang, L.; Liu, B.; Liu, R.; Zhang, Z., Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging. ACS Applied Materials & Interfaces 2016, 8 (11), 7390-7395.
    56. Zhang, M.; Okazaki, T.; Iizumi, Y.; Miyako, E.; Yuge, R.; Bandow, S.; Iijima, S.; Yudasaka, M., Preparation of small-sized graphene oxide sheets and their biological applications. Journal of Materials Chemistry B 2016, 4 (1), 121-127.
    57. Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C., An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications 2015, 6, 5716.
    58. Chu, J. H.; Kwak, J.; Kim, S.-D.; Lee, M. J.; Kim, J. J.; Park, S.-D.; Choi, J.-K.; Ryu, G. H.; Park, K.; Kim, S. Y.; Kim, J. H.; Lee, Z.; Kim, Y.-W.; Kwon, S.-Y., Monolithic graphene oxide sheets with controllable composition. Nature Communications 2014, 5, 3383.
    59. Lu, Q.; Deng, J.; Hou, Y.; Wang, H.; Li, H.; Zhang, Y.; Yao, S., Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chemical Communications 2015, 51 (33), 7164-7167.
    60. Posudievsky, O. Y.; Kozarenko, O. A.; Khazieieva, O. A.; Koshechko, V. G.; Pokhodenko, V. D., Ultrasound-free preparation of graphene oxide from mechanochemically oxidized graphite. Journal of Materials Chemistry A 2013, 1 (22), 6658-6663.
    61. Liu, F.; Jang, M. H.; Ha Hyun, D.; Kim, J. H.; Cho, Y. H.; Seo Tae, S., Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Advanced Materials 2013, 25 (27), 3657-3662.
    62. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.
    63. Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 2012, 6 (6), 5102-5110.
    64. Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H., Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Advanced Materials 2014, 26 (20), 3297-3303.
    65. Zhao, H.-X.; Wang, Y.-C.; Zhang, L.-Y.; Wang, M., One- and two-photon luminescence in graphene oxide quantum dots. New Journal of Chemistry 2015, 39 (1), 98-101.
    66. Sun, Y.; Zheng, Y.; Chen, J.; Zhang, W.; Tang, N.; Du, Y., Intrinsic magnetism of monolayer graphene oxide quantum dots. Applied Physics Letters 2016, 108 (3), 033105.

    QR CODE