簡易檢索 / 詳目顯示

研究生: 陳振偉
Jhen-Wei Chen
論文名稱: 具前端轉換器永磁同步馬達驅動系統之建構及操控性能探究
DEVELPOMENT AND DRIVING PERFORMANCE STUDY OF PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE WITH FRONT-END CONVERTER
指導教授: 廖聰明
Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 143
中文關鍵詞: 永磁同步馬達強健電流控制切換式整流器低頻切換高頻切換軟式切換前端轉換器脈幅/脈寬調制操控特性評估
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在建構一具前端轉換器之永磁同步馬達驅動系統,並從事其操作性能探究。首先研習PMSM之結構、主導方程式及等效電路參數之估測。接著建構一以數位信號處理器為主之PMSM驅動系統,並設計強健斜率比較電流控制脈寬調制機構,使其具有優良之線圈電流追控特性。並以一些實測結果驗証所建構PMSM驅動系統之正常操作。
    有關切換式整流器之開發,首先建立一數位控制低頻切換式整流器。其他有關此低頻切換式整流器之研究含:製作類比IC為主之控制電路、從事降低噪音之電流控制切換控制、以及軟式切換控制等。此外,亦設計一硬式及一軟式切換高頻切換式整流器。經由一些量測波形確認所設計組立切換式整流器之正常運轉及特性。建立具前端轉換器之永磁同步馬達驅動系統後,實測比較評估此驅動系統於PAM及PAM/PWM控制下之總體驅動性能。結果証實配裝前端切換式整流器有利於PMSM驅動系統從事PAM/PWM混合切換控制,獲得折衷性能,含效率、轉矩紋波及入電電力品質等。再者,HF-SMR比LF-SMR具有較佳之電力品質。


    The major purpose of this thesis is to establish a PMSM drive equipped with front-end switch-mode rectifier (SMR) and to perform its driving performance study. First, the structure, governing equations, and equivalent circuit parameter estimation of a PMSM are studied. Then a DSP-based experimental PMSM drive is established with a robust ramp-comparison CCPWM control scheme being properly designed to yield excellent winding current tracking performance. And the normal operation of the established PMSM drive is verified experimentally.
    In the development of SMRs, a low-frequency (LF) SMR with suitable digital feedback control is first developed. Other related topics concerning the LF-SMR include IC-based analog control circuit, the switching control for reducing the current harmonic with acoustic noise frequencies, the soft switching control, etc. In addition, a hard- and a soft-switching HF-SMRs are also designed and implemented. Some measured key waveforms are provided to evaluate their normal operations and performances. Having established the PMSM drive equipped with front-end SMRs, the comparative performance studies are made for the whole drive system under PWM and PWM/PAM controls. The experimental results confirm that the front-end SMR may facilitate the PAM/PWM hybrid switching control to yield compromised performance requirements in wide speed range. These requirements include efficiency, torque ripple, drawn power quality, etc. And moreover, the HF-SMR yields better line drawn power quality compared with the LF-SMR.

    ACKNOWLEDGEMENT ABSTRACT LIST OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION CHAPTER 2 PERMANENT MAGNET SYNCHRONOUS MOTORS 2.1 Introduction 2.2 Structural Features and Operation of PMSM-based BDCMs 2.3 Governing Equations 2.4 Equivalent Circuit Parameter Estimation CHAPTER 3 ESTABLISHMENT OF AN EXPERIMENTAL DSP-BASED PMSM DRIVE 3.1 Introduction 3.2 DSP-Based PMSM Drive 3.2.1 Practical Digital Control Considerations 3.2.2 PMSM Drive 3.3 Current-Controlled PWM Scheme 3.3.1 System Configuration 3.3.2 Robust Current Control Scheme 3.4 Some Measured Results 3.4.1 Commutation Signals 3.4.2 Driving Performance CHAPTER 4 FRONT-END SMRs FOR PMSM DRIVE 4.1 Introduction 4.2 Circuit Configuration and Control of SMR 4.3 Analysis and Design of LF-SMR Circuit 4.4 Closed-Loop Operation of LF-SMR 4.5 Dynamic Voltage Control of LF-SMR 4.6 Performance Evaluation of LF-SMR 4.7 IC-Based Control Scheme for LF-SMR 4.8 Switching Control of LF-SMR for Reducing Acoustic Noise 4.9 LF Single-Phase SSMR 4.10 HF Single-Phase SMR and SSMR 4.10.1 Hard-Switching SMR 4.10.2 DSP-Based Single-Phase SSMR 4.10.3 Design of Power Circuit Components 4.10.4 Design of Constituted Components 4.11 Performance Evaluation of SMR and SSMR CHAPTER 5 PAM/PWM SWITCHING CONTROL FOR PMSM DRIVE WITH FRONT-END SMR 5.1 Introduction 5.2 Some Key Parameters and Issues of a PMSM Drive 5.3 Some Commonly-Used Switching Techniques 5.3.1 Square-Wave Switching 5.3.2 Sinusoidal Pulse Width Modulation 5.3.3 Modified PWM 5.3.4 Programmed Harmonic Elimination PWM (HEPWM) 5.3.5 Programmed DC-Link Voltage Waveform via PAM Control 5.3.6 Delta Modulated PWM 5.4 Comparative Performance Evaluation of the PMSM Drive under Different Front-END SMRs and Switching Schemes CHAPTER 6 CONCLUSIONS REFERENCES

    [1] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988.
    [2] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
    [3] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, 1996.
    [4] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: John Wiley & Sons, Inc., 1997.
    [5] B. K. Bose, Power Electronics and Variable Frequency Drives: Technology and Applications, IEEE Press, New York, 1997.
    [6] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall Inc., 2001.
    [7] B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall Inc., 2002.
    [8] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part I,” IEEE Trans. Ind. Applicat., vol. 36, no. 5, pp. 1455-1466, 2000.
    [9] G. L. Donner, W. L. Subler and S. T. Evon, “Motor primer- part II,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 955-965, 2002.
    [10] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part III,” IEEE Industry Applications Conference, pp. 137-146, 2002.
    [11] B. K. Oakes, G. Donner and S. T. Evon, “Motor primer- part IV,” IEEE Trans. Ind. Applicat., vol. 40, no. 5, pp. 1441-1447, 2004.
    [12] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” IEEE Industry Applications Conference, vol. 2, pp. 840-845, 1999.
    B. Analysis, Design, Modeling and Parameter Estimation
    [13] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994.
    [14] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
    [15] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000.
    [16] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
    [17] IEC 34-4: Methods for determining synchronous machine quantities from tests, International Electrotechnical committee, June 1995.
    [18] IEC 34-2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles), International Electrotechnical committee, Nov. 1996.
    [19] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” IEEE Industry Applications Conference, vol. 1, pp. 29-34, 1997.
    [20] D. Y. Ohm, “Dynamic model of PM synchronous motors,” Available: http://www. drivetechinc.com/articles/IM97PM_Rev1forPDF.pdf.
    [21] M. A. Jabbar, J. Dong and Z. Liu, “Determination of machine parameters for internal permanent magnet synchronous motors,” IEEE International Conference on Power Electronics, Machines and Drives, vol. 2, pp. 805-810, 2004.
    [22] A. B. Proca, A. Keyhani, A. El-Antably, Lu Wenzhe and Min Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 386-391, 2003.

    [23] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1265-1272, 2001.
    [24] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 41-47, 2003.
    [25] J. L. Chen, “Performance improvement study for a permanent magnet synchronous motor drive with variable-voltage DC link,” M. S. Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2004.
    C. Current and Speed Controls
    [26] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design. New York: John Wiley & Sons, 2003.
    [27] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [28] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [29] D. Zmood and D. G. Holms, “Practical performance limitations for PWM strategies,” IEEE Industry Applications Conference, vol. 2, pp. 1245-1252, 1998.
    [30] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 56-63, 1998.
    [31] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM Inverter with zero steady state error,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 814-822, 2003.
    [32] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
    [33] B. H. Bae and S. K. Sul, “A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 802-810, 2003.
    [34] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
    [35] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Applicat., vol. 30, no. 4, pp. 920-926, 1994.
    [36] S. Bolognani and M. Zigliotto, “Full-digital predictive hysteresis current control for switching losses minimisation in PMSM drives,” IEEE International Conference on Power Electronics, Machines and Drives, pp. 61-67, June 2002.
    [37] Z. Kovacic, S. Bogdan and M. Puncec, “Adaptive control based on sensitivity model-based adaptation of lead-lag compensator parameters,” IEEE International Conference on Industrial Technology, vol. 1, pp. 321-326, 2003.

    [38] J. S. Ko, H. Kim and S. H. Yang, “Precision speed control of PMSM using neural network disturbance observer on forced nominal plant,” IEEE Control Conference, vol. 3, pp. 1746-1752, July 2004.
    [39] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad, “Robust speed control of PMSM drive system with lag time compensation,” IEEE International Conference on Electrical, Electronic and Computer Engineering, pp. 823-829, 2004.
    [40] C. Busada, G. Bortolotto and J. Balda, “Variable structure techniques applied to sensorless speed control of permanent magnet synchronous motors,” IEEE International Caracas Conference on Devices, Circuits and Systems, pp. 62/1-62/4, March 2000.
    [41] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” IEEE Power Electronics Specialists Conference, vol. 5, pp. 3397-3402, June 2004.
    [42] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1529-1535, 2004.
    [43] C. M. Liaw, “Design of a two-degree-of-freedom controller for motor drives,” IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1215-1220, 1992.
    D. Performance Improvement Control
    [44] M. F. Rahman, L. Zhone and K. W. Lim, “A DSP based instantaneous torque control strategy for interior permanent synchronous motor drive with wide speed range and reduced torque ripples,” IEEE Industry Applications Conference, vol. 1, pp. 518-524, 1996.
    [45] C. Stancu, S. Hiti and F. Biais, “Maximum torque-per-ampere control of a saturated surface-mounted permanent magnet motor,” IEEE Power Electronics Specialists Conference, vol. 4, pp. 1667-1672, 2002.
    [46] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 146, no. 6, pp. 678-684, 1999.
    [47] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 1045-1051, 2003.
    [48] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
    [49] J. J. Chen and K. P. Chin, “Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 929-936, 2003.
    [50] R. Monajemy and R. Krishnan, “Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” IEEE Industry Applications Conference, vol. 1, pp. 238-245, 1995.
    [51] J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1193-1198, 1996.
    [52] W. L. Soong and T. J. E. Miller, “Theoretical limitations to the field-weakening performance of the five classes of brushless synchronous AC motor drive,” IEEE International Conference on Electrical Machines and Drives, no. 376, pp. 127-132, 1993.
    [53] T. M. Jahns, “Component rating requirements for wide constant power operation of interior PM synchronous machine drives,” IEEE Industry Applications Conference, vol. 3, pp. 1697-1704, 2000.
    [54] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conversion, vol. 17, no. 1, pp. 79-84, 2002.

    E. Sensorless Control
    [55] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” IEEE Industry Applications Conference, vol. 1, pp. 143-150, 1999.
    [56] J. Yang, Z. Song, X. Ding and H. Yang, “Sensorless control of surface permanent magnet synchronous motor using a structural adaptive flux observer,” World Congress on Intelligent Control and Automation, vol. 5, pp. 4414-4417, June 2004.
    [57] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, 2002.
    [58] Z. Chen, M. Mutuwo, S. Doki and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-294, 2003.
    [59] S. Ogasawara and H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency,” IEEE Trans. Ind. Applicat., vol. 34, no. 4, pp. 806-812, 1998.
    [60] V. Petrovic and A. M. Stankovic, “Saliency-Based Position Estimation in PM Synchronous Motors,” IEEE Industry Applications Conference, vol. 2, pp. 801-806, 2001.
    [61] J. K. Lee, J. K. Seok and D. C. Lee, “Sensorless speed control of nonsalient permanent magnet synchronous motor using rotor position tracking PI controller,” IEEE Power Electronics Specialists Conference, vol. 5, pp. 4024-4029, June 2004.
    [62] B. Terzic and M. Jadric, “Design and implementation of the extended Kalman filter for the speed and rotor position estimation of brushless DC motor,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1065-1073, 2001.
    [63] S. Bolognani, L. Tubiana and M. Zigliotto, “Extended kalman filter tuning in sensorless PMSM drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1741-1747, 2003.
    [64] A. Qiu, Bin Wu and H. Kojori, “Sensorless control of permanent magnet synchronous motor using extended Kalman filter,” Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1557-1562, May 2004.
    [65] M. E. Haque, L. Zhong and M. F. Rahman, “A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1376-1383, Nov. 2003.

    [66] J. I. Ha, K. Ide, T. Sawa and S. K. Sul, “Sensorless Position Control and Initial Position Estimation of an Interior Permanent Magnet Motor,” IEEE Industry Applications Conference, vol. 4, pp. 2607-2613, 2001.
    [67] A. B. Kulkarni and M. E. Senior, “A Novel Position Sensor Elimination Technique for the Interior Permanent-Magnet Synchronous Motor Drive,” IEEE Trans. Ind. Applicat., vol. 28, no. 1, pp. 144-150, Jan./Feb. 1992.
    [68] K. W. Lee, D. H. Jung and I. J. Ha, “An online identification method for both stator resistance and back-EMF coefficient of PMSMs without rotational transducers,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 507-510, April 2004.
    F. Motor Drive with Varying DC-link Voltage and PAM/PWM Operation
    [69] H. S. Black, “Modulation theory,” Princetown. NJ: Van Nostrand & Co., 1953.
    [70] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004.
    [71] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” IEEE Power Conversion Conference, pp. 478-483, 1993.
    [72] K. Taniguchi, N. Kimura, Y. Takeda, S. Morimoto and M. Sanada, “A novel PAM inverter system for induction motor drive,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 129-134, 1995.
    [73] K. Taniguchi, Y. Matano, T. Morizane and H. W. Lee, “PAM system for motor drive with soft-switching PFC converter,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 3, pp. 1820-1825, 1996.
    [74] K. Taniguchi, T. Sodeyama, T. Morizane and N. Kimura, “Novel strategy for soft-switching PAM inverter system,” IEEE Power Conversion Conference, vol. 3, pp. 1267-1272, 2002.
    [75] W. L. Soong and T. J. E. Miller, “Theoretical limitations to the field-weakening performance of the five classes of brushless synchronous AC motor drive,” IEEE International Conference on Electrical Machines and Drives, no. 376, pp. 127-132, 1993.
    [76] K. Yamamoto, K. Shinohara and H. Makishima, “Characteristics of permanent magnet synchronous motor driven by PWM inverter with voltage booster,” IEEE Trans. Ind. Applicat., vol. 40, no. 4, pp. 1145-1152, July-Aug. 2004.
    [77] Z. Wu, Z. Genfu and J. Ying, “Line adaptive PAM&PWM drive for BLDCM,” IEEE International Power Electronics and Motion Control Conference, vol. 3, pp. 1263-1267, 2004.
    [78] P. N. Enjeti, P. D. Ziogas, J. F. Lindsay and M. H. Rashid, “A new PWM speed control system for high-performance AC motor drives,” IEEE Trans. Ind. Electorn., vol. 37, no. 2, pp. 143-151, 1990.

    [79] S. R. Bowes and P. R. Clark, “Transputer-based harmonic-elimination PWM control of inverter drives,” IEEE Trans. Ind. Applicat., vol. 28, no. 1, pp. 72-80, 1992.
    [80] B. N. Chaudhari and B. G. Fernandes, “Investigations on delta modulated inverter,” TENCON 99. Proceedings of the IEEE Region 10 Conference, vol. 2, pp. 1006-1009, Sept. 1999.

    [81] C. F. Christiansen, M. I. Valla and C. H. Rivetta, “A synchronization technique for static delta-modulated PWM inverters,” IEEE Trans. Ind. Electorn., vol. 35, no. 4, pp. 502-507, 1988.
    G. Switching Mode Rectifiers
    [82] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, May 2003.
    [83] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
    [84] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
    [85] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” IEEE International Conference on Power Electronics, Drives and Energy Systems, vol. 2, pp. 637-643, 1996.
    [86] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, pp. 348-353, 1998.
    [87] A. Kandianis and S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 244-249, 1994.
    [88] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” Proc. IEE Electric Power Applicat., vol. 150, no. 1, pp. 21-30, 2003.
    [89] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
    [90] I. Suga, M. Kimata, Y. Ohnishi and R. Uchida, “New switching method for single-phase AC to DC converter,” IEEE Power Conversion Conference, pp. 93-98, 1993.
    [91] J. A. Pomilio and G. Spiazzi, “A double-line-frequency commutated rectifier complying with IEC 1000-3-2 standards,” IEEE Applied Power Electronics Conference and Exposition, pp. 349-355, 1999.
    [92] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-193, 2000.
    [93] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
    [94] K. Taniguchi, H. Baba, M. Ogawa and M. Kawaji, “Driving circuit for single-pulse soft-switching PFC converter,” IEEE Power Conversion Conference, pp. 1232-1237, 2002.
    [95] Y. Zhang and P. C. Sen, “A new soft-switching technique for buck, boost, and buck-boost converters,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1775-1782, 2003.
    [96] G. Moschopoulos and Li Shumin, “A soft-switched AC-DC boost converter with power factor correction and reduced switch voltage stress,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 375-378, May 2003.
    [97] G. Hua and F. C. Lee, “Soft-switching techniques in PWM converters,” IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595-603, Dec. 1995.
    [98] Y. Deng and X. He, “Novel passive soft switching schemes for high power single phase PFC rectifiers,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 957-961, 2002.
    [99] Y. Jang, D. L. Dillman and M. M. Jovanovic, “A new soft-switched PFC boost rectifier with integrated flyback converter for stand-by power,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 413-419, 2004.
    [100] L. H. S. C. Barreto, M. G. Sebastiao, L. C. de Freitas, E. A. A. Coelho, V. J. Farias and J. B. Jr. Vieira, “Analysis of a soft-switched PFC boost converter using analog and digital control circuits,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 221-227, Feb. 2005.
    H. DSP-Based Digital Control and Digital Signal Processor
    [101] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
    [102] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999.
    [103] “Single-Chip, DSP-Based High Performance Motor Controller ADMC 401,” Analog Devices Inc., 2000.
    [104] “ADSP-2100 Family User’s Manual,” Analog Devices Inc., 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE