研究生: |
金崇碩 Chin, Tsung-Shou |
---|---|
論文名稱: |
以超高頻(40.68 MHz)電漿輔助化學氣相沉積系統成長微晶矽薄膜之研究 Study on Very High Frequency (40.68 MHz) PECVD Growth of Microcrystalline Silicon Thin Films |
指導教授: |
黃金花
Huang, Jin-Hua |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 微晶矽 、超高頻電漿 |
外文關鍵詞: | microcrysatlline silicon, VHF |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用超高頻電漿化學氣相沉積(VHF-PECVD)在不同製程壓力、電漿功率、氫流量、矽甲烷流量與溫度下成長微晶矽薄膜,並分析微晶矽薄膜的鍍膜速率、結晶率、晶粒大小、能隙及電導率以利將來用於矽薄膜太陽能電池。
在微晶矽薄膜太陽能電池內,本質微晶矽薄膜為主要產生電子電洞對處,所以其薄膜特性對於矽薄膜太陽能電池極為重要,又因微晶矽薄膜吸收係數小,需要較厚的厚度才能產生較多的電子電洞對,所以沉積速率會影響微晶矽太陽能電池製造成本,在本實驗以本質微晶矽薄膜的沉積速率來看,最快速率發生在製程壓力4torr、電漿功率400W、氫流量600sccm、溫度200℃、矽甲烷流量40sccm時。本實驗中結晶率最大時發生在製程壓力7torr、電漿功率300W、氫流量1000sccm、溫度200℃、矽甲烷流量30sccm時。依據不同條件可調變能隙範圍在1.4eV~2.0eV。電導率愈高,使得在本質微晶矽薄膜的載子傳輸較不受阻而能達電極形成較大的光電流,電導率最高時發生在製程壓力2torr、電漿功率300W、氫流量400sccm、溫度300℃、矽甲烷流量15sccm時。由本實驗結果看來本質微晶矽薄膜在製程壓力4torr,電漿功率400W,氫流量600sccm,溫度200℃,矽甲烷流量15sccm時有較好的特性。
In this thesis, the effects of process pressure, plasma power, hydrogen flow rate, silane flow rate and temperature on the growth of three kinds of silicon thin film, i.e. intrinsic microcrystalline, p-type and n-type silicon thin film via very-high-frequency PECVD (VHF-PECVD) were systematically discussed. Moreover, various electrical and structural properties such as deposition rate, crystallinity, grain size, energy band gap, conductivity, doping concentration and diffusion length were investigated thoroughly for the application of silicon thin film solar cells.
On the basis of literature, the deposition rate and crystallization are important factors to affect the performance of silicon thin film. Hence, these two parameters provide a starting-point in our study. The largest deposition rate was found to be a process pressure of 4 torr, plasma power of 400W, hydrogen flow rate of 600sccm, temperature of 200℃ and silane flow rate of 40sccm. Moreover, the best crystallization was found to be a process pressure of 7torr, plasma power of 300W, hydrogen flow rate of 1000sccm, temperature of 200℃ and silane flow rate of 30sccm. Energy band gap could be varied from 1.4eV to 2.0eV under different environment. The transportation of carriers between intrinsic microcrystalline silicon thin film and solar cell electrode is better for the higher electrical conductivity to generate large photo-current. The highest electrical conductivity was observed to be a process pressure of 2 torr, plasma power of 300W, hydrogen flow rate of 400sccm, temperature of 300℃ and silane flow rate of 15sccm. The optimum behavior was performed in a process pressure of 4 torr, plasma power at 300W, hydrogen flow rate of 600sccm, temperature of 200℃, silane flow rate of 15sccm.
[1]D.L.Staebler, C.R. Wronski, J.Appl.Physics.Vol.51,June
(1980).
[2]黃惠良,曾百亨,太陽電池,五南出版社(2008)。
[3]莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書(1997)。
[4]Akihisa Matsuda, Journal of Non-Crystalline Solid,p338-340(2004).
[5]Akihisa Matsuda, Thin Solid Film ,337(1999)1-6.
[6]E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère,
S. Poulin and S. C. Gujrathi, Phys. Rev. B, 38, 8171
(1988).
[7]S.M. Sze, Physics of Semiconductor Devices, John Wiley
and Sons,Inc, New York(1981).
[8]R. Hull, Properties of Crystalline Silicon, INSPEC,
London(1999).
[9]D. Huber, A. Bachmeier, R. Wahlich, H. Herzer ,Proc.
Conf.Semiconductor Silicon 1986 Eds. H.R. Huff, T. Abe,
B. Kobessen(Electrochemical Society, USA, 1986)p.1022-32.
[10]Tobias Roschek, Microcrystalline Silicon Solar Cells
Prepared by 13.56 MHzPECVD(2003).
[11]D.E.Carlson, C.R.Wronski, Appl.Phys.Lett.,28(11),671
(1976).
[12]R.C.Chittick, J.H.Alexander, J.Electrochem. Soc.116,77
(1969).
[13]P.G.LeComber, W.E.Spear, Phys.Rev.Lett.25,509(1970).
[14]Y.Tawada, H.Okamoto, Appl.Phys.Lett.,39(3),237(1981).
[15]H.W.Deckman, C.R.Wronski, Appl.Phys.Lett.,42(11),968
(1983).
[16]Yoshihiro Hamakawa, Thin Film Solar Cell, Springer
(2003).
[17]H.Curtins, Plasma Chemistry and Plasma Processing,
Vol.7,Issue3,p267-273(1987).
[18]汪建民, 材料分析, 中國材料科學學會。
[19]趙學禮, 非晶矽太陽能電池知材料成長、元件製作及特性分析,
國立中央大學碩士論文(2007)。
[20]ZHANG Xiaodan, ZHU Feng, ZHAO Ying, HOU Guofu, Journal
of Synthetic Crystals, Vol.33, No.3, June(2004).
[21]郭學軍,盧景霄, Journal of Semiconductor,Vol.29,NO.6,June
(2008).
[22]A.M.Funde, Nabeel Ali Bakr, D.K. Kamble, Solar Energy
Materials & Solar Cells, Vol.92(2008)1217–1223.
[23]YANG Hui-Dong, optoelectronic letter,Vol.1,No.1,July
(2005)
[24]張曉丹, Journal of Optoelectronic.Laser,Vol.15,No.5,May
(2004).
[25]Swati Ray, Sumita Mukhopadhyay, Philosophical Magzine,
Vol. 89, Nos.28–30, 1–21 October(2009)2573–2585.
[26]N.Wyrsch, Journal of Non-Crystalline Solids 266-269
(2000)1099~1103.
[27]劉玉芬, 郜小勇, 中國真空科學與技術學報,第28卷,第4期,
2008,7、8月。
[28]陳憲揮, ECR-CVD成長微晶矽薄膜之研究,中興大學論文(2000)。
[29]J.Poortmans, V.Arkhipov, Thin Film Solar Cells(2006).
[30]A. Chowdhury, Solar Energy Materials & Solar Cells ,
Vol92,(2008) 385–392.
[31]K. Yamamoto, Solar Energy 77(2004) 939–949.
[32]W.J. Soppe, 20 th European Photovoltaic Solar Energy
Conference and Exhibition, Barcelona, Spain, 6-10 June
(2005).