簡易檢索 / 詳目顯示

研究生: 孫維毅
Wei-Yi Sun
論文名稱: 在廣義度量空間中的弱(Φ,ϕ)收縮函數之週期點和固定點
Periodic Points and Fixed Points for the Weaker (Φ,ϕ)-Contractive Mappings in Complete Generalized Metric Spaces
指導教授: 張東輝
Tong-Huei Chang
陳啟銘
Chi-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 7
中文關鍵詞: Fixed pointPeriodic PointsContractive MappingsComplete Generalized Metric Spaces
外文關鍵詞: 固定點, 週期點, 收縮函數, 廣義度量空間
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們介紹在完備空間中的弱(Φ,ϕ)收縮函數,並在這類型的收縮下證明其週期點和固定點,我們的結果可推廣或改善最近許多文獻中的固定點定理


    We introduce the notion of weaker (Φ,ϕ)-contractive mapping in completemetric spaces and prove the periodic points and fixed points for this type of contraction. Our results generalize or improve many recent fixed point theorems in the literature

    1.Introduction and Preliminaries 2.Main Results 3.Acknowledgment 4.References

    [1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations
    integerales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
    [2] D. W. Boyd and J. S. W. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical
    Society, vol. 20, pp. 458–464, 1969.
    [3] A. Branciari, “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric
    spaces,” Publicationes Mathematicae Debrecen, vol. 57, no. 1-2, pp. 31–37, 2000.
    [4] A. Azam and M. Arshad, “Kannan fixed point theorem on generalized metric spaces,” Journal of
    Nonlinear Sciences and Its Applications, vol. 1, no. 1, pp. 45–48, 2008.
    [5] P. Das, “A fixed point theorem on a class of generalized metric spaces,” Journal of the Korean
    Mathematical Society, vol. 9, pp. 29–33, 2002.
    [6] D. Mihet¸, “On Kannan fixed point principle in generalized metric spaces,” Journal of Nonlinear Science
    and Its Applications, vol. 2, no. 2, pp. 92–96, 2009.
    [7] B. Samet, “A fixed point theorem in a generalized metric space for mappings satisfying a contractive
    condition of integral type,” International Journal of Mathematical Analysis, vol. 3, no. 25–28, pp. 1265–
    1271, 2009.
    [8] B. Samet, “Discussion on “A fixed point theorem of Banach-Caccioppoli type on a class of generalized
    metric spaces”,” Publicationes Mathematicae Debrecen, vol. 76, no. 3-4, pp. 493–494, 2010.
    [9] H. Lakzian and B. Samet, “Fixed points for φ, ϕ-weakly contractive mappings in generalized metric
    spaces,” Applied Mathematics Letters. In press.
    [10] A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and
    Applications, vol. 28, pp. 326–329, 1969.
    [11] A. A. Eldred and P. Veeramani, “Existence and convergence of best proximity points,” Journal of
    Mathematical Analysis and Applications, vol. 323, no. 2, pp. 1001–1006, 2006.
    [12] M. De la Sen, “Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan
    self-mappings,” Fixed Point Theory and Applications, vol. 2010, Article ID 572057, 23 pages, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE