簡易檢索 / 詳目顯示

研究生: 潘昭銘
Pan, Zhao-Ming
論文名稱: 整合式活化裝置用於清大硼中子捕獲治療射束中子能譜確認之理論與實驗測試
A theoretical and experimental test on the performance of an integrated activation device for neutron spectrum confirmation at THOR-BNCT
指導教授: 許榮鈞
Sheu, Rong-Jiun
口試委員: 薛燕婉
Liu, Hsueh Yen-Wan
蔡惠予
Tsai, Hui-Yu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 136
中文關鍵詞: 硼中子捕獲治療箔片活化中子能譜反解射束特性研究射束品保
外文關鍵詞: Foil Activation, Neutron Spectrum Unfolding, Beam Characterization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增加THOR-BNCT設施的品保以及品管措施涵蓋範圍,本研究利用一新型整合式活化偵檢器(整合緩速中子的壓克力假體與七片活化箔片)並建立相關方法論,用以協助確定此設施硼中子捕獲治療中子射束的品質。該能譜確認裝置具有以下特性:只需三十分鐘的射束照射時間即可完成全部箔片的活化;全部實驗流程可在只使用一台高純度鍺偵檢器的狀況下,於一天之內完成。另外,藉由蒙地卡羅程式重新定義之個別箔片響應函數,接續的能譜反解工作可以非傳統方式進行,且依然取得可靠結果。本研究於2020年六月至2021年七月以九次實驗測試確認了此裝置的再現性及性能,並以理論模擬測試建立一個箔片反應率與中子能群變化關係的對照表。使用者可參考此表上的關係,立即從實驗結果判斷THOR-BNCT設施的中子能譜是否發生改變。總體而言,此項裝置可快速偵測中子能譜是否產生變化並量化改變幅度,可用於確認照射條件是否符合設施原本設計。因此,本論文建議可將此裝置作為每月或是每季的品保以及品管措施,以更加提升目前THOR-BNCT設施的品質管理。


    To extend the domain of subjects examined in current QA/QC measures in THOR-BNCT facility, this study constructed a methodology based on an integrated activation device integrating PMMA phantom and 7 foils aiming to assure the BNCT beam quality. It requires only 30 minutes beam time and all the process of which can be finished within a day using single HPGe. Additionally, spectrum unfolding can be achieved in an unorthodox yet reliable way using redefined foil response functions calculated by MCNP. From June, 2020 to July, 2021, there are 9 experimental tests conducted which verify the reproducibility and performance of this device. There are also theoretical tests based on simulation that construct a lookup table relating the foil reaction rate and flux variation of neutron groups. Through this table, users can immediately judge whether the neutron spectrum have varied or not on the basis of experiment result. Generally speaking, this device can provide a quick detection on the variation of neutron spectrum and quantify its amplitude. It is suitable for checking if the irradiation condition satisfies the facility's design. Therefore, the incorporation of this detector as a spectrum QA/QC measure in THOR-BNCT on a quarterly or monthly basis is recommended to better the current quality management in THOR-BNCT facility.

    Abstract (Chinese) i Abstract (English) ii Acknowledgement iii Contents iv Table Index vii Figure Index viii 1 Introduction 1 1.1 Boron Neutron Capture Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Foil Activation Detectors and Neutron Spectrum Measurements . . 2 1.2.2 Characterization Researches on THOR-BNCT Epithermal Neutron Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope and Structure of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Neutron Detection by Activation 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Foil Activation Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Geometry and Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Activation Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Reaction Rate per Atom of Foil Activation . . . . . . . . . . . . . . . . . . . . . 8 2.4 Germanium Detector for Gamma Counting . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 DSPEC and GammaVision . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.3 Energy and Efficiency Calibration . . . . . . . . . . . . . . . . . . . . . 12 3 THOR-BNCT Facility and Employed QA/QC Measures 17 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 On-Line Neutron Monitoring System . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Established Quality Assurance and Quality Control Measures . . . . . . . . 19 3.3.1 Paired Ionization Chambers . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.2 Au/Cu Foil Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Neutron Spectrum Measurement 23 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Detectors for Neutron Spectrum Measurement . . . . . . . . . . . . . . . . . 24 4.2.1 Bonner Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 Bare Foil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3 Spherical Activation Detector . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Maximum Entropy Deconvolution Algorithm . . . . . . . . . . . . . . . . . . . 26 4.3.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.2 Optimization and Simulated Annealing . . . . . . . . . . . . . . . . . 27 4.3.3 Scaling Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Integrated Activation Device for Neutron Spectrum Unfolding and Spectrum Confirmation at THOR-BNCT 30 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Device Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 THOR-BNCT Neutron Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.6 Results and Discussion on Decay Gamma Measurement and Foil Reaction Rate per Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.7 Results and Discussion on Spectrum Unfolding . . . . . . . . . . . . . . . . . 89 5.7.1 Choosing Proper Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.7.2 Initial Spectrum vs. Unfolded Spectrum . . . . . . . . . . . . . . . . . 89 5.8 Sensitivity Test on Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.8.1 Changing Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.8.2 Tilting Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.8.3 Results of Sensitivity Test . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Conclusion and Future Work 110 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A Lookup Table for Inspecting Spectrum Change Through Foil Activation Results 113 B MAXED Practice on MATLAB 116 C Unfolding with Tilted Spectrum as Initial Guess 123 Reference 134

    1. Current Status of Neutron Capture Therapy TECDOC Series 1223 (International
    Atomic Energy Agency, Vienna, 2001).
    2. Altieri, S. & Protti, N. A brief review on reactor-based neutron sources for boron
    neutron capture therapy. Therapeutic Radiology and Oncology 2 (2018).
    3. Kreiner, A. J. et al. Present status of Accelerator-Based BNCT. Reports of Practical
    Oncology and Radiotherapy 21. 7th Young BNCT meeting, 95–101 (2016).
    4. Dymova, M. A. et al. Boron neutron capture therapy: Current status and future
    perspectives. Cancer Communications 40, 406–421 (2020).
    5. Graham, J. et al. Neutron flux characterization techniques for radiation effects studies.
    Journal of Radioanalytical and Nuclear Chemistry 291 (Feb. 2012).
    6. ALQahtani, M. & Alajo, A. B. Characterization of prompt neutron spectrum of the
    Missouri University of Science and Technology Reactor. Nuclear Engineering and
    Design 320, 57–64 (2017).
    7. Giegel, S. H. et al. Determination of the neutron energy spectrum of a radial neutron
    beam at a TRIGA reactor. Nuclear Instruments and Methods in Physics Research
    Section B: Beam Interactions with Materials and Atoms 454, 28–39 (2019).
    8. Tanaka, T. et al. Measurement of neutron spectrum using activation method in deuterium
    plasma experiment at LHD. Fusion Engineering and Design 146. SI:SOFT-
    30, 496–499 (2019).
    9. Liu, Y.-H. Neutronic Characterization of an Epithermal Neutron Beam in Boron
    Neutron Capture Therapy PhD thesis (Institute of Nuclear Engineering and Science,
    National Tsing Hua University, 2009).
    10. Lin, H.-X. Characteristics and Application of a Spherical Type Activation-based Detector
    for Neutron Spectrum Measurements at the THOR BNCT Facility MA thesis
    (Institute of Nuclear Engineering and Science, National Tsing Hua University,
    2014).
    11. Huang, C.-K. Applications of Neutron Activation Analysis on Boron Neutron Capture
    Therapy Institute of Nuclear Engineering and Science, National Tsing Hua
    University. PhD thesis (2017).
    12. Lee, T.-A. Development and Test of an Integrated Device for Spectrum Confirmation
    at THOR-BNCT MA thesis (Institute of Nuclear Engineering and Science, National
    Tsing Hua University, 2020).
    13. Pietropaolo, A. et al. Neutron detection techniques from ueV to GeV. Physics Reports
    875, 1–65 (2020).
    14. McGregor, D. & Shultis, J. K. Radiation Detection: Concepts, Methods, and Devices
    1st ed. (CRC Press, 2020).
    15. Knoll, G. F. Radiation Detection and Measurement 4th ed. (John Wiley and Sons,
    Ltd, 2010).
    16. Gehrke, R. & Davidson, J. Acquisition of quality gamma-ray spectra with HPGe spectrometers.
    Applied Radiation and Isotopes 62, 479–499 (2005).
    17. Gilmore, G. R. Practical Gamma-Ray Spectrometry 2nd ed. (John Wiley and Sons,
    Ltd, 2008).
    18. GammaVision-32 Software User’s Manuel (A66-B32) (Advanced Measurement Technology,
    Inc., 2006).
    19. Jiang, S.-H. et al. The overview and prospects of BNCT facility at Tsing Hua Openpool
    reactor. Applied Radiation and Isotopes 161, 109143 (2020).
    20. Lin, Y.-C. Radiation Dose Rate Measurement in a Mixed Radiation Field Using
    Paired Ionization Chambers PhD thesis (Department of Biomedical Engineering
    and Environmental Science, National Tsing Hua University, 2013).
    21. Attix, F. H. Introduction to Radiological Physics and Radiation Dosimetry 1st ed.
    (John Wiley and Sons, Ltd, 1986).
    22. Chang, C.-H. The Measurement of Neutron Fluence Rate for Tsing Hua Open-pool
    Reactor Boron Neutron Capture Therapy Beam MA thesis (Department of Engineering
    and System Science, National Tsing Hua University, 2004).
    23. Brooks, F. & Klein, H. Neutron spectrometry—historical review and present status.
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
    Spectrometers, Detectors and Associated Equipment 476. Int. Workshop on Neutron
    Field Spectrometry in Science, Technology and Radiation Protection, 1–11 (2002).
    24. Reginatto, M. Overview of spectral unfolding techniques and uncertainty estimation.
    Radiation Measurements 45. Proceedings of the 11th Symposium on Neutron
    and Ion Dosimetry, 1323–1329 (2010).
    25. Bramblett, R. L. et al. A new type of neutron spectrometer. Nuclear Instruments
    and Methods 9, 1–12 (1960).
    26. Thomas, D. & Alevra, A. Bonner sphere spectrometers—a critical review. Nuclear
    Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment 476. Int. Workshop on Neutron Field
    Spectrometry in Science, Technology and Radiation Protection, 12–20 (2002).
    27. Reginatto, M. & Goldhagen, P. MAXED, a computer code for the deconvolution of
    multisphere neutron spectrometer data using the maximum entropy method tech.
    rep. EML-595 (Environmental Measurements Laboratory, U.S. Department of Energy,
    201 Varick Street, 5th Floor, New York, NY, June 1998).
    28. Goffe,W. L. et al. Global optimization of statistical functions with simulated annealing.
    Journal of Econometrics 60, 65–99 (1994).
    29. NuDat 2 database accessed at: 2021-07-20. National Nuclear Data Center, Brookhaven
    National Laboratory. https://www.nndc.bnl.gov/nudat2/.
    30. Sheu, R.-J. Lecture Notes in Monte Carlo Method NES 505500. Institute of Nuclear
    Engineering and Science, National Tsing Hua University (2021).
    31. Werner, C. J. et al. MCNP version 6.2 release notes tech. rep. LA-UR-18-20808 (Los
    Alamos National Lab, Los Alamos, NM, Feb. 2018).
    32. Werner, C. J. et al. MCNP User’s manual Code Version 6.2 tech. rep. LA-UR-17-
    29981 (Los Alamos National Lab, Los Alamos, NM, Oct. 2017).

    QR CODE