簡易檢索 / 詳目顯示

研究生: 吳名清
Mingching Wu
論文名稱: 光學微機電製程平台技術開發:以靜電式垂直梳狀致動器驅動之微掃描面鏡為例
The Development of Optical MEMS Fabrication Platform — the Case of Micro Scanning Mirror Driven by Electrostatic Comb-drive Actuator
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 173
中文關鍵詞: 靜電式垂直梳狀致動器微掃描面鏡光學微機電技術
外文關鍵詞: self-aligned vertical comb actuator, scanning mirror, optical MEMS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光學微機電(optical MEMS)技術利用半導體製程,以及其他相關微機械加工製程技術,已發展出各式高精度、光學品質之元件,如微光開關、光衰減器、以及顯示器等。對一個可動系統而言,傳統的製造技術乃利用精密加工,分別製作出致動器、傳動器、連接器、以及被動元件等,最後透過精密的組裝(assembly)技術,便可完成運作系統;然而,利用光學微機電技術來設計元件時,元件製造是藉由半導體製程所定義,屬於平面加工製程(planner fabrication),系
    統所需的元件同時於半導體製程中完成,對於系統積體化(integration)有非常大的幫助,然而,平面加工的製造方式也導致了設計與製造的相關性,設計者必須考量製程的特性,選用適合元件的製程,而製程也必須提供多樣性來滿足設計者。因此,針對設計與製造密不可分的關連性,開發包含最多可能性之通用製程平台技術,將有其必要性,特別是製程能否提供設計者在結構厚度與垂直深度上的變化性,將是能否發揮設計巧思與創意的關鍵。本研究以目前最通用之多晶矽薄膜製程技術為出發,研究多晶矽薄膜製程所遭遇之問題,如光學平坦度與薄膜結構剛性等;進而針對這些問題,開始設計整合其他微加工製程,如體蝕刻製程(bulk micromachining)與深蝕刻製程(DRIE)等,一方面透過製程設計來增加薄膜之結構剛性,另一方面並利用體蝕刻製程之晶格面變化,企圖設計出整合性平台製程技
    術,利用製程在結構厚度與垂直深度上的變化性,建立光學微機電之通用製程平台。除了製程設計外,本研究也將利用所提出之製程,針對微掃描面鏡在光學平坦度與驅動機制,設計肋強化結構與大位移之靜電式垂直梳狀致動器,以發展大角度、高共振頻率、低驅動電壓之微掃描面鏡。最後,透過微掃描面鏡之性能測試,將展示通用型製程平台技術的性能特色與可行性。


    Optical Microelectromechanical systems (MEMS) have recently emerged as a powerful means of implementing such functions in compact and low-cost form, owing to the unique capability of this technology to integrate optical, mechanical, and electrical components on a single wafer. Various optical MEMS components, such as laser printer, display, and optical cross connects, have been demonstrated. However, how to used planar fabrication for commercialized optical MEMS device is one of key challenges. This work integrated two-poly MUMP’s process, multi-depth DRIE etching and bulk micromachining to accomplish superior poly-Si micro-optical systems. The thickness and depth-difference of the devices was significantly increased using the trench-refilled structure. In addition, the space between the devices and the substrate was remarkably increased to ~100µm by bulk silicon etching. Moreover, the self-aligned vertical comb actuators were available through the multi-depth DRIE etching for high performance out-pf-plane actuator. In applications, he scanning mirrors driven by self-aligned vertical comb actuator were demonstrated. These multi-depth optical devices can further integrate with the MUMP’s devices to establish a more powerful MOEMS platform.

    摘要 ..................................1 Abstract ..................................2 誌謝 ..................................3 目錄 ..................................5 圖目錄 ..................................8 表目錄 .................................14 第一章、序論 .................................15 1-1研究動機 .................................15 1-2文獻回顧 .................................17 1-3 研究目標 .................................21 1-4 全文架構 .................................21 第二章、多晶矽薄膜與SOI 自組裝製程技術 ............28 2-1多晶矽面型微加工製程步驟 ..................28 2-2 殘餘應力自組裝機構 ..................30 2-3 改良式穩固自組裝機構 ..................32 2-4 SOI 自組裝製程技術 ..................34 2-5 小結 ..................37 第三章、(100)矽晶片之多晶矽薄膜製程技術 ............52 3-1 製程平台架構與概念 ..................52 3-2 多晶矽孔道回填技術 ..................53 3-3 兩階段且自對準之深蝕刻技術 ..................56 3-4 體蝕刻空腔技術 ..................57 3-5 整合型光學微機電製程平台―MOSBE II ............58 3-6 製程破壞機制之討論與改進 .................59 3-7 MOSBE II之製程結果 .................62 3-8 微掃描面鏡之元件測試 .................63 3-8-1 肋強化微面鏡之曲率半徑量測 .................64 3-8-2 扭轉軸設計與扭轉角度之探討 .................65 3-8-3 垂直梳狀電極排列與扭轉角度之探討 ............66 3-8-4 動態頻率響應與步階響應測試 .................67 3-9 小結 .................69 第四章、(111)矽晶片之多晶矽薄膜製程技術 ............92 4-1 (111)晶片體蝕刻製程特性 ............92 4-2 多重深度之深蝕刻溝槽技術 ............93 4-3 (111)矽晶片之多晶矽薄膜製程平台技術 ............95 4-4 (111)矽晶片之多晶矽薄膜製程結果 ............96 4-5 多晶矽垂直梳狀電極驅動之單晶矽微面鏡 ............98 4-5-1 單晶矽微面鏡之靜態測試 ............99 4-5-2 驅動電壓與扭轉角度 ............99 4-5-3 動態頻率響應與步階響應測試 ...........100 4-6 小結 ................101 第五章、結論與未來工作 ................113 參考文獻 ................116 附錄A、靜電式垂直梳狀電極驅動之微掃描面鏡理論分析 ..129 A-1 微面鏡光學特性 ................129 A-2 微面鏡靜態形變 ................130 A-3 微面鏡動態形變 ................133 A-4 微面鏡響應頻率 ................135 A-5 靜電式垂直梳狀致動器 ................137 附錄B、SOI 晶片雙向蝕刻製程技術 ................148 B-1 SOI 晶片雙向蝕刻製程步驟 ................148 B-2 SOI 晶片雙向蝕刻製程之結果 ................149 附錄C、微光學讀寫頭 ................154 C-1 研究背景 ................154 C-2 聚焦式微光學讀寫頭 ................155 C-3 循軌式微光學讀寫頭 ................158 C-3 透鏡載具與微透鏡之整合 ................159 C-4 小結 ................160 論文著作 ................171

    參考文獻
    [1] K.E. Petersen “Silicon as a mechanical material,” Proceedings of IEEE, vol. 70, No. 5, pp. 420-457, 1982.
    [2] Ming C. Wu, “Micromachining for Optical and Optoelectronic Systems,”Proceedings of IEEE, vol. 85, no. 11, pp. 1833-1856, 1997.
    [3] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
    [4] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
    [5] R. S. Muller, and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1705-1720, 1998.
    [6] http://www.analog.com/index.html:iMEMS® accelerometers
    [7] http://www.dlp.com : Texas Instruments-Digital Light Process
    [8] L. J. Hornbeck, “Current status of the digital micromirror device (DMD) for projection television applications,” IEEE Int. Electron Devices Meeting,
    Washington, DC, Dec. 1993, pp. 381–384.
    [9] L. J. Hornbeck, “Digital Light Processing: A New MEMS-Based Display Technology,” Technical Digest of the IEEJ 14th Sensor Symposium, Kawasaki, Japan, June 1996, pp. 297-304
    [10] M. R. Douglass, “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Device (DMD™),” the 36th Annual International Reliability
    Physics Symposium, Reno, Nevada, March 1998, pp. 9-16.
    [11] A. B. Sontheimer, “Digital Micromirror Device (DMD) Hinge Memory Lifetime Reliability Modeling,” 2002 IEEE International Reliability Physics Symposium, Dallas TX, April 2002, pp.118-121.
    [12] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Select Topics in Quantum Electronics, vol. 5, pp. 4-9, 1999.
    [13] T. Akiyama, and K. Shono, “Controlled Stepwise Motion in Polysilicon Microstructures,” Journal of Microelectromechanical Systems, vol. 2, pp.106-110, 1993.
    [14] T. Akiyama, D. Collard, and H. Fujita, “Scratch Drive Actuator with Mechanical Links for Self-Assembly of Three-Dimensional MEMS,” Journal of Microelectromechanical Systems, vol. 6, pp. 10-17, 1997.
    [15] R. A. Conant, J. T. Nee, M. Hart, O. Solgaard, K.-Y. Lau, and R. S. Muller,“Reliability and robustness of micromachined scanning mirrors,” IEEE/LEOS Micro Opto Electro Mechanical Systems-MOEMS ’99, Mainz, Germany, Sept.
    1999, pp. 120-125.
    [16] R. A. Conant, J. T. Nee, K.-Y. Lau, and R. S. Muller, “A fast flat scanning micromirror,” IEEE Solid-State Sensor and Actuator Workshop Technical Digest, Hilton Head Island, SC, June 2000, pp. 6-9.
    [17] http://www.memscap.com/:MEMSCAP- PolyMUMPs
    [18] K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development., vol. 24, no. 5, pp. 631–637, 1980.
    [19] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “Pin joints, gears, springs, cranks, and other novel micromechanical structures,” 4th Int. Conf. Solid-State Sensors and
    Actuators (Transducers’87), Tokyo, Japan, June 1987, pp. 853–856.
    [20] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,”1988 IEEE Int. Electron Devices Meeting, San Francisco, CA, Dec 1988, pp. 666–669.
    [21] R. T. Howe and R. S. Muller, “Polycrystalline silicon micromechanical beams,”Electrochemical Society Spring Meeting, Montreal, Quebec, Canada, May 1982, pp. 184–185.
    [22] H. Guckel and D. W. Burns, “Planar processed polysilicon sealed cavities for pressure transducers arrays,” Tech. Dig. IEEE Int. Electron Devices Meeting, San
    Francisco, CA, Dec 1984, pp. 223–225.
    [23] R. T. Howe, “Surface micromachining for microsensors and microactuators,”J. Vacuum Sci. Tech. B, vol. 6, pp. 1809–1813, 1988.
    [24] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Trans. Electron Devices, vol. 35, pp.
    724–730, 1988.
    [25] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A (Physical), vol. 20, pp. 25-32,
    1989.
    [26] W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic comb-drive of lateral polysilicon resonators,” Sensors Actuators, vol. A21-23, pp. 328–331, 1990.
    [27] A. P. Lee, D. J. Nikkel, Jr., and A. P. Pisano, “Polysilicon linear vibromotors,”
    Proc. 7th Int. Conf. Sensors and Actuators, Yokohama, Japan, June 1993, pp.46–47.
    [28] M. C. Wu, L.-Y. Lin, S.-S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sensors and Actuators A (Physical), vol. 50, pp. 127-134,1995
    [29] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined threedimensional micro-optics for integrated free-space optical system,” IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1445-1447, December 1994.
    [30] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monlithic free-space optical disk pickup heads by surface micromachining,” Optical Letters,
    vol. 21, pp. 155-157, 1996.
    [31] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface-,Micromachined Micro-XYZ Stages for Free-Space Microoptical Bench,” IEEE Photonics Technology Letters, vol. 9, pp. 345-347, 1997.
    [32] K. S. J. Pister, “Hinged polysilicon structures with integrated CMOS TFT’s,”Technical Digest of the 1992 Solid State Sensor and Actuator Workshop, 1992, Hilton Head Island, SC, pp. 136-139.
    [33] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators A, vol. 33, pp. 249-256, 1992.
    [34] L. Fan, and M. C. Wu, “Self-assembled micro-XYZ stages for optical scanning and alignment,” the 10th Annual Meeting of the IEEE Lasers and Electro-Optics
    Society, San Francisco, CA, 1997, pp. 266-267.
    [35] L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” Digest of 1998 IEEE/LEOS Summer Topical Meeting, Monterey, CA, July 1998, pp. II/107-108.
    [36] M.-H. Kiang, O. Solgaard, and K.-Y. Lau,“Electrostatic Combdrive-Actuated Micromirrors for Laser-Beam Scanning and Positioning,” Journal of Microelectromechanical Systems, vol. 7, no. 1, pp. 27-37, 1998.
    [37] M.-H. Kiang, O. Solgaard, R. S. Muller, and K.-Y. Lau, “Micromachined polysilicon microscanners for barcode readers,” IEEE Photonics Technology Letters, vol. 8, pp. 95-97, 1998.
    [38] P. M. Hagelin, U. Krishnamoorthy, R. A. Conant, R. S. Muller, K.-Y. Lau, and O. Solgaard, “Integrated micromachined scanning display systems,” 18th Congress
    of the International Commission for Optics, San Francisco, CA, August 1999, pp.472-473.
    [39] P. M. Hagelin, and O. Solgaard, “Optical raster-scanning displays based on surfacemicromachined polysilicon mirrors,” IEEE Journal of Selected Topics in Quantum Electronics, vol.5, no.1, pp. 67-74, 1999.
    [40] R. R. A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors & Actuators A
    (Physical), vol. 88, pp. 273-283, 2001.
    [41] R. R. A. Syms, “Surface tension powered self-assembly of 3-D microoptomechanical structures,” Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 448-455, 1999.
    [42] R. R. A. Syms, “Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives,” IEEE Photonics Technology Letters, vol. 12, no. 11, pp.
    1519-1521, 2000.
    [43] P. E. Kladitis, K. F. Harsh, V. M. Bright, and Y. C. Lee, “Three-dimensional modeling of solder shape for the design of solder self-assembled micro-electro-mechanical systems,” IEEE MEMS’99, Nashville, Tennessee, November 1999, pp. 11-18.
    [44] D. C. Miller, W. Zhang, and V. M. Bright, “Microrelay packaging technology using flip-chip assembly,” IEEE MEMS’00, Miyazaki, Japan, January 2000, pp.265-270.
    [45] V. Kaajakari, and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” 10th International Conference on Solid-State Sensors and Actuators (Transducers'99), Sendai, Japan, June 1999, pp. 212-215.
    [46] V. Kaajakari and A. Lal, “Thermo-kinetic actuation for hinged structure batch microassembly,” IEEE MEMS’02, Las Vegas, NV, January 2002, pp. 196-199.
    [47] U. Srinivasan, D. Liepmann, and R. T. Howe, microstructure to substrate self-assembly using capillary forces,” Journal of Microelectromechanical Systems, vol. 10, no. 1, pp.17-24, 2001.
    [48] M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller,“Micromirrors for adaptive-optics arrays,” Transducers’01, Munich, Germany, June 2001, pp.1290-1293.
    [49] V. A. Aksyuk, F. Pardo, C. A. Bolle, C. R. Giles, and D. J. Bishop, “Lucent Microstar(TM) micromirror array technology for large optical crossconnects,”Proceedings of SPIE, Santa Clara, CA, September 2000, vol. 4178, pp. 320-324.
    [50] V.A. Aksyuk, F. Pardo, and D.J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Proceedings of the SPIE, vol. 3680, 1999,
    pp. 984-993.
    [51] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, Ronald Ryf, David T. Neilson, J. Kim, C. Randy Giles, D. Bishop,
    “Beam-Steering Micromirrors for Large Optical Cross-Connects,” Journal of Lightwave Technology, vol. 21, pp. 634-642, 2003
    [52] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the Expandability of Free-Space Micromachined Optical Cross Connects,” Journal of Lightwave Technology, vol. 18, pp. 482-489, 2000.
    [53] R. Conant, J. Nee, K. Lau, R. Muller, “Dynamic Deformation of Scanning Micromirrors,” 2000 IEEE/LEOS Inernational Conference on Optical MEMS, Kauai, Hawaii, August 2000, pp. 49-50.
    [54] M. Hart, R.A. Conant, K.-Y. Lau, and R.S. Muller, “Stroboscopic Interferometer System for Dynamic MEMS Characterization,” Journal of Microelectromechanical Systems, vol. 9, pp. 409-418, 2000.
    [55] P. B. Chu, S.-S. Lee, S. Park, M. J. Tsai, I. Brener, D. Peale, R. A. Doran, C. Pu,“MOEMS-enabling technologies for large optical cross-connects,” Proceedings of the SPIE, vol. 4561, pp. 55-65, 2001.
    [56] V. Milanović, “Multilevel-Beam SOI-MEMS Fabrication and Applications,”Journal of Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004.
    [57] V. Milanovic, M. Last, and K.S.J. Pister, “Torsional micromirrors with lateral actuators,” Transducers ’01, Munich, Germany, June 2001, pp.1298-1301.
    [58] S. Kwon, V. Milanović, L. P. Lee, “A High Aspect Ratio 2D Gimbaled Microscanner with Large Static Rotation,” IEEE/LEOS Optical MEMS 2002, Lugano, Switzerland, Aug. 2002.
    [59] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving
    electrodes,” IEEE 13th Annual International Conference on Micro Electro Mechanical Systems, 2000, Miyazaki, Japan, pp. 473-478.
    [60] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “A resonantly excited 2D micro-scanning-mirror with large deflection,” Sensors and Actuators A (Physical), vol. 89, pp. 104-111, 2001.
    [61] T. J. Brosnihan, S. A. Brown, A. Brogan, C. S. Gormley, D. J. Collins, S. J. Sherman, M. Lemkin, N. A. Polce, and M. S. Davis, “Optical IMEMS ® – A
    Fabrication Process for MEMS Optical Switches with Integrated On-Chip Electronics,” Transducers’03, Boston, MA, June 2003, pp.1638-1642.
    [62] T. Juneau, K. Unterkofler, T. Seliverstov, S. Zhang, and M. Judy, “Dual-Axis Optical Mirror Positioning Using A Nonlinear Closed-Loop Controller,”Transducers’03, Boston, MA, June 2003, pp.560-563.
    [63] H. Guckel, D. W. Burns, H.A.C. Tilmans, C. C. G. Visser, D. W. Deroo, T. R. Christenson, P. J. Klomberg, J. J. Sniegowski, and D. H. Jones, “Processing
    conditions for polysilicon films with tensile strain for large aspect ratio microstructures,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 1988, pp.51-56.
    [64] H. Guckel, D. W. Burns, C. C. G. Visser, H.A.C. Tilmans, and D. Deroo,“Fine-grained polysilicon films with built-in tensile strain,” IEEE Transactions
    on Electron Devices, vol. 35, issue 6, pp.800~801, 1988.
    [65] H. Guckel, D. W. Burns, H.A.C. Tilmans, D. Deroo, and C. R. Rutigliano,“Mechanical properties of fine grained polysilicon-the repeatability issue,”
    Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 1988, pp.96-99.
    [66] B. C. S. Chou, J.-S. Shie, and C.-N. Chen, “Fabrication of low-stress dielectric thin-film for microsensor applications,” IEEE Electron Device Letters., vol. 18, pp.599~601, 1997.
    [67] D. M. Burns and V. M. Bright, “Optical power induced damage to microelectromechanical mirrors,” Sensors Actuators A., vol. 70, pp. 6–14, 1998.
    [68] J. Zhang, Y.-C. Lee, A. Tuantranont, and V. M. Bright, “Thermal Analysis of Micromirrors for High-Energy Applications,” IEEE Transactions on Advanced Packaging, vol. 26, no. 3, pp.310-317, 2003.
    [69] F. P. Beer and E. R. Johnston, “Mechanics of Materials,” 2nd edition, New York: McGraw-Hill, 1992.
    [70] D. C. Miller, W. Zhang, and V. M. Bright, “Microrelay packaging technology using flip-chip assembly,” IEEE MEMS’00, Miyazaki, Japan, 2000, pp. 265-270.
    [71] Y.-P. Ho, M. Wu, H.-Y. Lin, and W. Fang, “A Robust and Reliable Stress-induced Self-assembly Mechanism for Optical Devices,” IEEE/LEOS Optical MEMS 2002, Lugano, Switzerland, 200, pp. 131-132.
    [72] S. Hollar, A. Flynn, S. Bergbreiter, K.S.J. Pister, “Robot leg motion in a planarized-SOI, 2 poly process,” Hilton Head 2002 Workshop, Hilton Head Island, SC, June 2-6, 2002, pp.54-58.
    [73] C. Keller and M. Ferrari, “Milli-scale polysilicon structures,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 1994, pp. 132–137.
    [74] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77.
    [75] A. Singh, D. A. Horsley, M. B. Cohn, A. P. Pisano, R. T. Howe, “Batch transfer of microstructures using flip-chip solder bump bonding,” Transducers’97, Chicago, IL, June 1997, pp. 265–268.
    [76] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. Microelectromechanical Systems, vol. 9, pp. 288-294, 2000.
    [77] H.-Y. Lin, M.-C. Wu, M.-L. Tsai, and W. Fang, “Towards a Lightwave MEMS Platform Using MOSBE Process,” IEEE/LEOS Optical MEMS 2001, Okinawa, Japan, pp. 27-28.
    [78] W. H. Juan and S. W. Pang, “Controlling Sidewall Smoothness for Micromachined Si Mirrors,” J. Vac. Sci. Technol. B, vol. 14, pp. 4080-4084, 1996.
    [79] K. R. Williams and R. S. Muller, “Etch Rates for Micromachining Processing,”Journal of Microelectromechanical Systems, vol. 5, pp. 256-269, 1996.
    [80] K. R. Williams, K. Gupta, and M. Wasilik, “Etch Rates for Micromachining Processing—Part II,” Journal of Microelectromechanical Systems, vol. 12, pp. 761-778, 2003.
    [81] T. Baum and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si (100) in KOH for micromachining applications,” J. Micromech. Microeng., vol. 7, pp.338–342, 1997.
    [82] Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware.” Jpn.
    J. Appl. Phys., vol. 42, pp. 3690–3694, 2003.
    [83] H. Y. Lin, and W. Fang, “Rib-reinforced micromachined beam and its applications,” Journal of Micromechanics and Microengineering, vol. 10, pp.93-97, 2000.
    [84] O. Tsuboi, Y. Mizuno, N. Koma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki, F.Yamagishi, “A rotational comb-driven micromirror with a large deflection angle and low drive voltage,” IEEE MEMS’02, Las Vegas, NV, Jan 2002, pp.532-535.
    [85] F. Pan, J. Kubby, E. Peeters, A. T. Tran, and S. Mukherjee, “Squeeze film damping effect on the dynamic response of a MEMS torsion mirror,” J.
    Micromech. Microeng., vol.8, pp.200-208, 1998.
    [86] C.-C. Cheng, and W. Fang, 2003, “Tunable Quality Factor Using Novel Micromachined Structures,” Transducer’03, Boston, MA, USA, pp.1590-1593.
    [87] S. Lee, S. Park, and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. Microelectromech. Syst., vol.8, pp.409-416, 1999.
    [88] S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, “Surface/Bulk Micromachined Single-crystaline-silicon micro-gyroscope,” J. Microelectromech. Syst., vol.9,
    pp.557–567, 2000.
    [89] R. E. Oosterbroek, J. W. Berenschot, H. V. Jansen, A. J. Nijdam, G. Pandraud, A. Berg, and M. C. Elwenspoek, “Etching Methodologies in (111) – Oriented Silicon Wafers,” J. Microelectromech. Syst., vol. 9, vo. 3, pp.390-398, 2000.
    [90] J. Hsieh and W. Fang, “A Boron Etch-stop Assisted Lateral Silicon Etching Process for Improved High-Aspect-Ratio Silicon Micromachining and Its Applications,” Journal of Micromechanics and Microengineering, vol.12,
    pp.574-581, 2002.
    [91] H. Hu, W. Fang, "A novel (111) single-crystal-silicon accelerometer using parallel-connected parallel plate capacitance," MEMS 2004, Maastricht, Netherlands, Jan. 2004, pp.597-600.
    [92] M. J. Sinclair, “A high force low area MEMS thermal actuator”, Inter. Society conference on Thermal phenomena, 2000, pp.127-132.
    [93] Rebecca Cragun and Larry L. Howell, “Linear Thermomechanical Microactuators,” ASME IMECE, 1999, pp. 181-188.
    [94] H. R. Shea, A. Gasparyan, H. B. Chan, Susanne Arney, R. E. Frahm, D. Lopez, S. Jin, and R. P. McConnell. “Effects of Electrical Leakage Currents on MEMS
    Reliability and Performance,” IEEE Transactions on Device and Materials Reliability, vol. 4, issue 2, pp.198-207, 2004.
    [95] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” New York: John Wiley and Sons., 1991.
    [96] W. Fang, H.-C. Tsai, and C.-Y. Lo, “Determining Thermal Expansion Coefficients of Thin Films Using Micromachined Cantilevers,” Sensors and Actuators A, vol. 77, pp.21-27. 1999.
    [97] P. J. Brosens, “Dynamic mirror distortions in optical scanning,” Applied Optics, vol. 11, pp. 2988-2989, 1972.
    [98] H. Urey, D. W. Wine, and T. D. Osborn, “Optical performance requirements for MEMS-scanner based microdisplays,” Proceedings of the SPIE, vol. 4178, pp.
    176-185, 2000.
    [99] R.J. Roark, Roark's Formulas for Stress and Strain, Warren C. Young. 4th edition, New York: McGraw-Hill, 1965.
    [100] Hiroshi Toshiyoshi, Wibool Piyawattanametha, Cheng Ta Chan, and Ming C. Wu, “Linearization of Electrostatically Actuated Surface Micromachined 2D Optical Scanner,” Journal of Microelectromechanical Systems, vol. 10, pp.
    205-214, 2001.
    [101] H. Toshiyoshi, K. Isamoto, A. Morosawa, M. Tei, and H. Fujita, “A 5-Volt Operated MEMS Variable Optical Attenuator,” Transducers’03, Boston, MA, June 2003, pp. 1768-1771.
    [102] U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J.P. Heritage, O. Solgaard,“Dual-mode micromirrors for optical phased array applications ”, Sensors and Actuators A., vol. 97-98, pp.21-26, 2001.
    [103] P. R. Patterson, D. Hah, H. Nguyen, H. Toshiyoshi, R. Chao and M. C. Wu,“A scanning micromirror with angular comb drive actuation”, Conference on Optical Fiber Communication, Technical Digest Series(OFC 2002), Anaheim,
    CA, 2002, pp. 544-547.
    [104] D. Hah, S. Huang, H. Nguyen, H. Chang, J. Tsai, M. C. Wu and H. Toshiyoshi, “Low voltage MEMS analog micromirror arrays with hidden vertical comb-drive actuators”, Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, SC, June 2002, pp.11-14.
    [105] J.-L. A. Yeh, Y.-Y. Hui, and N.C. Tien,“Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical Systems, vol. 9 no.1, pp. 126-135, 2000.
    [106] J.-L.A Yeh, J. Hongrui, and N.C. Tien, “Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator.” Journal of Microelectromechanical Systems, vol. 8, no.4, pp. 456-65, 1999.
    [107] R.A. Conant, "Micromachined Mirrors," Ph.D. Dissertation, University of California, Berkeley, May 2002.
    [108] M. de Boer, H. Jansen, and M. Elwenspoek, “The Black Silicon Method V: A Study of The Fabricating of Movable Structures for Micro Electromechanical Systems,” Tansducers’95, Stockholm, Sweden, June 1995, pp. 565-568.
    [109] Y. Yee., H Nam, S Lee, J Uk Bu, Y. Jeon and S. Cho, “PZT Actuated Micromirror for Nano-Tracking of Laser beam for High-Density Optical Storage,” IEEE MEMS 2000, miyazaki, Japan, 23-27 Jan 2000, pp.435-440.
    [110] S. Hata, Y. Yamada, J. Ichihara, and A. Shimokohbe, “A Micro Lens Actuator for Optical Flying Head,” IEEE MEMS 2002, Las Vegas, pp. 507-510.
    [111] S.-H. Kim, Y. Yee, J. Choi, H. Kwon, M. -H. Ha, C. Oh, and J. U. Bu,“Integrated Micro Optical Flying Head with Lens Positioning Actuator for Small Form Factor Data Storage,” Transducers '03, Boston, pp. 607-610.
    [112] S.-H. Kim, Y. Yee, J. Choi, H. Kwon, M.-H. Ha, C. Oh, and J. U. Bu, “A micro optical flying head for a PCMCIA-sized optical data storage,” MEMS 04, Maastricht, Netherlands, Jan. 25-29, 2004, pp. 85-88.
    [113] 賴群峰, “ 整合UV 膠微透鏡及MUMPs 元件之SOI 微光學平台,” 清華大學碩士論文, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE