簡易檢索 / 詳目顯示

研究生: 林佩誼
Lin, Pei Yi
論文名稱: Wing morphogenesis defect (wmd)在果蠅發育中所扮演的角色
The role of wing morphogenesis defect (wmd) during Drosophila oogenesis
指導教授: 徐瑞洲
Hsu, Jui Chou
口試委員: 桑自剛
張壯榮
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 38
中文關鍵詞: wing morphogenesis defect (wmd)
外文關鍵詞: wing morphogenesis defect (wmd)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • wing morphogenesis defect (wmd)是一個具有七個WD-40 repeats 蛋白,在過去研究中已知會當成scaffold蛋白,和許多蛋白形成蛋白間有相互作用,參與細胞內調控訊號傳遞。Wmd為果蠅Serine-Threonine kinase Receptor-Associated Protein (STRAP)同源性分子,在過去研究STRAP哺乳動物的實驗中證實會參與調控Transforming Growth Factor-β(TGF-β)訊號傳遞中。而在果蠅翅膀發育中篩選參與調控EGFR和TGFF-β訊息的下游分子,Wmd是其中一個被篩選出的分子,因有果蠅翅膀發育上型態缺失因而命名為wing morphogenesis defect (wmd)。在此篇論文中我們利用成蟲母果蠅卵母細胞發育為模式生物,探討分析Wmd突變時所造成的影響。維持卵母細胞的發育是透過細胞骨架微管運送營養物質;類似的機制我們也在果蠅幼蟲複眼的單層表皮細胞中,成熟感光神經細胞中,核的移動得到相似的對應。我們發現wmd突變細胞內,沒有卵母細胞(oocyte)生成,細胞命運已被取代成營養細胞(nurse cell)。兩種細胞之間的不同在於卵母細胞會有特定的蛋白,例如:Egl,Bic-D,Orb累積以維持卵母細胞的成長。而特定蛋白的累積則是透過細胞骨架微管(microtubule)當成運送橋樑從營養細胞穿過細胞間通道(ring canals)運送到卵母細胞。相似的機制在感光神經細胞發育中,成熟的神經細胞核會從細胞基部往頂部移動也是透過細胞骨架微管運送;我們觀察到wmd突變細胞內,感光神經細胞沒有往頂部移動,更甚至往基部視柄移位的現象。在過去的研究中認為Wmd屬於MAPs (Microtubule Associated Protein),而我們證實Wmd會直接與微管(microtubule)結合也會和EB1 (microtubule end plus binding 1)結合。因此我們認為Wmd是利用其七個WD-40片段當成scaffold蛋白與微管(microtubule),和EB1結合,形成MAPs與蛋白之間相互作用,因而調控微管的穩定度,藉此而影響卵母細胞特定蛋白和感光神經細胞核的運送。


    wing morphogenesis defect (wmd) encodes a WD-40 domain-containing protein that plays critical roles in shaping wing morphology. Wmd shows significant homology with mammalian serine-threonine kinase receptor-associated protein (STRAP) that regulates transforming growth factor-β (TGF-s) signaling. WD-40 domain mediates diverse protein-protein interactions, including those involved in scaffolding and the cooperative assembly and regulation of dynamic multi-subunit complexes. We characterize the function of wmd during Drosophila development. Our results indicate that Wmd is involved in both oocyte determination during oogenesis and nuclear positioning in the developing photoreceptors. The progressive establishment of oocyte fate and nuclear positioning relies on microtubule-dependent. The microtubule network is thought to provide the basic intracellular framework for motility, while dynein and dynactin contribute motor activity and several mRNAs such as Bic-D, egl, orb and Dhc begin to accumulate in the oocyte. Disruption of microtubules results in a block in oocyte determination and nuclear migration. Previously studied, Wmd was shown to be a member of microtubule-associated proteins via a MT cosedimentation assay. These support the notion that Wmd functions with the microtubules to regulate nuclear migration. We show that germline clones of the wmd give rise to 16 nurse cell cysts, and we have analysed this phenotype using a variety of oocyte markers to investigate the role of Wmd in oocyte determination. Here we show that the Wmd acts together with microtubules and EB1 to stabilize microtubules to determine oocyte identity and required for nuclear localization in developing nervous system.

    Abstract …………………………………………………………. II 摘要 …………………………………………………………….. III 致謝 …………………………………………………………….. IV Introduction ……………………………………………………… 1 Materials and Methods ………………………………………….. 5 Results …………………………………………………………… 7 Conclusion and Discussion …………………………………….. 18 Figures …………………………………………………………… 22 References ……………………………………………………… 34

    Alves-Silva, J., Sanchez-Soriano, N., Beaven, R., Klein, M., Parkin, J., Millard, T.H., Bellen, H.J., Venken, K.J., Ballestrem, C., Kammerer, R.A., et al. (2012). Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J Neurosci 32, 9143-9158.
    Calvi, B.R., Lilly, M.A., and Spradling, A.C. (1998). Cell cycle control of chorion gene amplification. Genes Dev 12, 734-744.
    Carpenter, A.T. (1975). Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51, 157-182.
    Carpenter, A.T., and Sandler, L. (1974). On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics 76, 453-475.
    Chou, T.B., and Perrimon, N. (1996). The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673-1679.
    Collins, C.A., and Vallee, R.B. (1989). Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton 14, 491-500.
    Cooley, L., and Theurkauf, W.E. (1994). Cytoskeletal functions during Drosophila oogenesis. Science 266, 590-596.
    Cox, D.N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12, 3715-3727.
    Datta, P.K., Chytil, A., Gorska, A.E., and Moses, H.L. (1998). Identification of STRAP, a novel WD domain protein in transforming growth factor-beta signaling. J Biol Chem 273, 34671-34674.
    Datta, P.K., and Moses, H.L. (2000). STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling. Mol Cell Biol 20, 3157-3167.
    de Cuevas, M., Lee, J.K., and Spradling, A.C. (1996). alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122, 3959-3968.
    de Cuevas, M., and Spradling, A.C. (1998). Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125, 2781-2789.
    Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H.E., Mandelkow, E.M., and Mandelkow, E. (1995). Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270, 7679-7688.
    Dupin, I., and Etienne-Manneville, S. (2011). Nuclear positioning: mechanisms and functions. Int J Biochem Cell Biol 43, 1698-1707.
    Dworkin, I., and Gibson, G. (2006). Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173, 1417-1431.
    Faulkner, N.E., Dujardin, D.L., Tai, C.Y., Vaughan, K.T., O'Connell, C.B., Wang, Y., and Vallee, R.B. (2000). A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2, 784-791.
    Grieder, N.C., de Cuevas, M., and Spradling, A.C. (2000). The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253-4264.
    Guo, S., and Kemphues, K.J. (1995). par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611-620.
    Hughes, J.R., Meireles, A.M., Fisher, K.H., Garcia, A., Antrobus, P.R., Wainman, A., Zitzmann, N., Deane, C., Ohkura, H., and Wakefield, J.G. (2008). A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 6, e98.
    Huynh, J.R., and St Johnston, D. (2000). The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127, 2785-2794.
    Illenberger, S., Drewes, G., Trinczek, B., Biernat, J., Meyer, H.E., Olmsted, J.B., Mandelkow, E.M., and Mandelkow, E. (1996). Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 271, 10834-10843.
    Johnston, D.S., Russell, L.D., Friel, P.J., and Griswold, M.D. (2001). Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology 142, 2405-2408.
    Koch, E.A., and Spitzer, R.H. (1983). Multiple effects of colchicine on oogenesis in Drosophila: induced sterility and switch of potential oocyte to nurse-cell developmental pathway. Cell Tissue Res 228, 21-32.
    Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
    Lei, Y., and Warrior, R. (2000). The Drosophila Lissencephaly1 (DLis1) gene is required for nuclear migration. Dev Biol 226, 57-72.
    Li, D., and Roberts, R. (2001). WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58, 2085-2097.
    Lilly, M.A., de Cuevas, M., and Spradling, A.C. (2000). Cyclin A associates with the fusome during germline cyst formation in the Drosophila ovary. Dev Biol 218, 53-63.
    Lin, H., and Spradling, A.C. (1995). Fusome asymmetry and oocyte determination in Drosophila. Dev Genet 16, 6-12.
    Lin, H., Yue, L., and Spradling, A.C. (1994). The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120, 947-956.
    Liu, Z., Steward, R., and Luo, L. (2000). Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2, 776-783.
    Maiato, H., Sampaio, P., and Sunkel, C.E. (2004). Microtubule-associated proteins and their essential roles during mitosis. Int Rev Cytol 241, 53-153.
    Matanis, T., Akhmanova, A., Wulf, P., Del Nery, E., Weide, T., Stepanova, T., Galjart, N., Grosveld, F., Goud, B., De Zeeuw, C.I., et al. (2002). Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4, 986-992.
    McGrail, M., and Hays, T.S. (1997). The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409-2419.
    Navarro, C., Lehmann, R., and Morris, J. (2001). Oogenesis: Setting one sister above the rest. Curr Biol 11, R162-165.
    Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300.
    Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697-711.
    Oh, J., and Steward, R. (2001). Bicaudal-D is essential for egg chamber formation and cytoskeletal organization in drosophila oogenesis. Dev Biol 232, 91-104.
    Patterson, K., Molofsky, A.B., Robinson, C., Acosta, S., Cater, C., and Fischer, J.A. (2004). The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell 15, 600-610.
    Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W.B., Caskey, C.T., and Ledbetter, D.H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717-721.
    Reinsch, S., and Gonczy, P. (1998). Mechanisms of nuclear positioning. J Cell Sci 111 ( Pt 16), 2283-2295.
    Riechmann, V., and Ephrussi, A. (2001). Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 11, 374-383.
    Roper, K., and Brown, N.H. (2004). A spectraplakin is enriched on the fusome and organizes microtubules during oocyte specification in Drosophila. Curr Biol 14, 99-110.
    Sapir, T., Cahana, A., Seger, R., Nekhai, S., and Reiner, O. (1999). LIS1 is a microtubule-associated phosphoprotein. Eur J Biochem 265, 181-188.
    Sapir, T., Elbaum, M., and Reiner, O. (1997). Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J 16, 6977-6984.
    Schatten, H., Schatten, G., Petzelt, C., and Mazia, D. (1982). Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events. Eur J Cell Biol 27, 74-87.
    Schulze, E., Asai, D.J., Bulinski, J.C., and Kirschner, M. (1987). Posttranslational modification and microtubule stability. J Cell Biol 105, 2167-2177.
    Schupbach, T., and Wieschaus, E. (1991). Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119-1136.
    Shulman, J.M., Benton, R., and St Johnston, D. (2000). The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377-388.
    Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-185.
    Spradling, A.C., de Cuevas, M., Drummond-Barbosa, D., Keyes, L., Lilly, M., Pepling, M., and Xie, T. (1997). The Drosophila germarium: stem cells, germ line cysts, and oocytes. Cold Spring Harb Symp Quant Biol 62, 25-34.
    Suter, B., Romberg, L.M., and Steward, R. (1989). Bicaudal-D, a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev 3, 1957-1968.
    Suter, B., and Steward, R. (1991). Requirement for phosphorylation and localization of the Bicaudal-D protein in Drosophila oocyte differentiation. Cell 67, 917-926.
    Swan, A., Nguyen, T., and Suter, B. (1999). Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1, 444-449.
    Swan, A., and Suter, B. (1996). Role of Bicaudal-D in patterning the Drosophila egg chamber in mid-oogenesis. Development 122, 3577-3586.
    Telfer, W. H. (1975). Development and physiology of the oocyte-nurse cell
    syncytium. Adv. Insect Physiol. 11, 223-319.
    Theurkauf, W.E. (1994). Microtubules and cytoplasm organization during Drosophila oogenesis. Dev Biol 165, 352-360.
    Theurkauf, W.E. (1997). Oocyte differentiation: a motor makes a difference. Curr Biol 7, R548-551.
    Theurkauf, W.E., Alberts, B.M., Jan, Y.N., and Jongens, T.A. (1993). A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169-1180.
    Tomancak, P., Piano, F., Riechmann, V., Gunsalus, K.C., Kemphues, K.J., and Ephrussi, A. (2000). A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nat Cell Biol 2, 458-460.
    Vasquez, R.J., Gard, D.L., and Cassimeris, L. (1994). XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J Cell Biol 127, 985-993.
    Wang, D.S., Shaw, R., Hattori, M., Arai, H., Inoue, K., and Shaw, G. (1995). Binding of pleckstrin homology domains to WD40/beta-transducin repeat containing segments of the protein product of the Lis-1 gene. Biochem Biophys Res Commun 209, 622-629.
    Webster, D.R., and Borisy, G.G. (1989). Microtubules are acetylated in domains that turn over slowly. J Cell Sci 92 ( Pt 1), 57-65.
    Wharton, R.P., and Struhl, G. (1989). Structure of the Drosophila BicaudalD protein and its role in localizing the the posterior determinant nanos. Cell 59, 881-892.
    Wolf, N., Regan, C.L., and Fuller, M.T. (1988). Temporal and spatial pattern of differences in microtubule behaviour during Drosophila embryogenesis revealed by distribution of a tubulin isoform. Development 102, 311-324.
    Xu, T., and Rubin, G.M. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223-1237.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE