簡易檢索 / 詳目顯示

研究生: 陳偉倫
Chen, Wei-Lun
論文名稱: 探討待測物表面形貌對於差分干涉對比術量測的影響
The Effects of Surface Geometry on Differential Interference Contrast Measurement
指導教授: 林士傑
Lin, Shin-Chieh
口試委員: 陳政寰
李企桓
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 117
中文關鍵詞: 差分干涉對比術表面形貌量測定量化重建
外文關鍵詞: Differential Interference Contrast (DIC), topography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光電顯示產業的快速發展,越來越多透明材質的基板及薄膜被開發使用。此外,為了朝向輕薄化的趨勢發展,並且兼顧良好的成像品質,許多複雜的微結構被設計、應用在透明材料上,如ITO(Indium Tin Oxide)導電玻璃和塑膠等。而在商品化的過程中,必須面對品質檢測的需求,因此如何量測透明物件的形貌尺寸就顯得相當重要。
    在先前的研究中,已經驗證了差分干涉對比顯微術(Differential Interference Contrast Microscopy, 以下簡稱:DIC顯微術)用於定量化重建透明材質高度的可行性,然而,對於表面形貌變化較複雜的待測物並沒有相關的深入研究。本研究將探討以DIC顯微術量測透明材質三維形貌時,試片傾斜表面對於重建結果的影響。
    研究初期,使用光學模擬軟體ASAP建立DIC顯微鏡的架構,協助釐清各項光學參數對於DIC顯微影像的影響,並且模擬理想狀況下的DIC顯微影像。接著建立一套DIC檢測平台,針對表面形貌為傾斜表面的透明材質待測物進行外觀形貌的重建,以探討DIC顯微術用於透明材質傾斜表面形貌量測的可行性。


    Transparent components such as thin-film transistors, glass substrates, and light guide plate are greatly employed due to the rapid development of optoelectronic industry. More and more transparent components with complex geometries are used to fulfill the need. Therefore, there is an increasing demand for measuring the profile of these transparent components.
    In the previous study, we adopted the differential interference contrast (DIC) technique to measure the sub-micron thickness of transparent objects with step high structure. It is of interest to further study the light propagation mechanisms in the transmitted DIC system when transparent component with complex geometry is measured.
    In this study, the wedge angle measurement of prisms is used as a stepping stone to study the effects of complex geometry on the DIC images and profilometery reconstruction results. The study might provide some valuable information for adopting the DIC technique to measure the profile of transparent objects with complex geometry.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 研究背景 1 1-1-1 透明材質光電元件的發展 1 1-1-2 量測技術的發展 4 1-2 研究動機與目的 10 第二章 文獻回顧 12 2-1 基礎光學原理 12 2-1-1 光程 12 2-1-2 干涉原理 13 2-1-3 光的偏極 14 2-2 差分干涉對比顯微術 14 2-2-1 DIC顯微鏡光學架構 16 2-2-2 DIC稜鏡 19 2-2-3 塞拿蒙補償器(Senarmont Compensator) 22 2-3 DIC顯微術成像原理 24 2-4 DIC顯微術定量化重建方法 26 2-4-1 擷取相位微分資訊 26 2-4-2 相位微分資訊積分重建 27 2-4-3 相位資訊轉換成高度 33 2-5 量測試片傾斜表面相關文獻 34 第三章 研究方法 39 3-1 硬體架構與試片規格 39 3-2 研究規劃 45 第四章 DIC光學系統模擬 47 4-1 DIC光學模擬流程 47 4-2 建立DIC光學模擬模型 49 4-2-1 透鏡組 49 4-2-2 偏振元件 50 4-2-3 模擬DIC稜鏡 53 4-2-4 成像平面特性 55 4-3 模擬參數與待測試片 56 4-4 模擬結果與討論 60 第五章 實驗量測驗證 81 5-1 實驗器材 83 5-2 實驗架設與實驗步驟 86 5-3 實驗量測結果 88 5-4 實驗結果討論 107 第六章 結論與建議 111 6-1 結果討論 111 6-2 建議 113 參考文獻 114

    [1] E. Bob, “Making MicroLens Backlights Grow Up”, Journal of the society for Information Display, 5&6/01, pp.42-45, (2001)
    [2] G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and Microlens Study in a Color CMOS Image Sensor”, IEEE Trans. Electron Devices, vol.50, no.1, pp. 4–11, (2003)
    [3] 林學良, “背光模組介紹”, 精機集團通訊技術專欄-塑膠機類, http://www.or.com.tw/mz/down_mz_2/down_mz_2-b-27.htm
    [4] Ruey Fang Shyu, Hsiharng Yang, “A Promising Thermal Pressing Used in Fabricating Microlens Array”, Int J Adv Manuf Technol, 36:53–59, (2008)
    [5] Xiangliang Jin, Xiaoping Fan, Zhibi Liu, Zhangqu Kuang, Jie Cheng, Jie Chen, Yu Liu, and Jun Yang, “Measurement of High Sensitivity and Low Crosstalk of Zero-Space Microlens for 2.8-μm-Pitch Active Pixel Sensor”, IEEE Trans. Electron Devices, vol. 57, (2010)
    [6] Ray-Quen Hsu, Hsing-Bun Wang, and Da-Lan Liang, “Hot Embossing of Parallel v-Groove Microstructures on Glass”, J. Am. Ceram. Soc., pp. 2605–2608 (2009)
    [7] 潘重德, “平面顯示技術概論-背光模組之設計與趨勢”, http://tlc.istep.org.tw/ntu/Stream/opto/sec11/%E8%83%8C%E5%85%89%E6%A8%A1%E7%B5%84%E4%B9%8B%E8%A8%AD%E8%A8%88%E8%88%87%E8%B6%A8%E5%8B%A2.pdf
    [8] 陳麒麟, 張榮芳, 張加強, “軟性顯示器發展及關鍵技術現況”,機械工業雜誌, 258期, pp.110-121 (2004)
    [9] 梁素真, 廖顯杰, 金美敬, 陳嘉荔, “平面顯示技術發展藍圖”, 工研院IEK電子分項, (2003)
    [10] Displaybank report, “Flexible Display Technology and Market (2007~2017) ”, http://www.displaybank.com
    [11] 阮正鈞, “接觸/非接觸表面組織量測儀比較表”, (2004/07) http://www.zimmerman.com.tw/news/siddata/taylor-4.pdf
    [12] 黃白萍, “儀器總覽-光學量測儀器”, 行政院國家科學委員會精密儀器發展中心, pp.40-42 (1998)
    [13] 梁逸平, “熔融法折射式微透鏡陣列之設計製造與檢測”, 國立中央大學光電科學研究所碩士論文 (2001)
    [14] H. K. WICKRAMASINGHE, “Progress in Scanning Probe Microscopy ”, Acta Materialia, Vol.48, pp.347-358 (2000)
    [15] 楊練根, 王選擇, “新型表面形貌測量儀器”, 科學出版社, pp.17-18, (2008)
    [16] Bharat Bhushan, James C. Wyant, John Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profile”, Wear, Vol.122, pp.301-312 (1988)
    [17] H-J Jordan, M Wegner, H Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy”, Meas. Sci. Technol., pp.1142-1151, (1998)
    [18] Displaybank report, “Flexible Display Technology and Market Forecast (2008~2020)”, http://www.displaybank.com, (2008/10)
    [19] 余昇剛, “應用差分干涉對比術於透明材質的三維形貌量測方法”,清華大學碩士論文 (2009)
    [20] 劉濬嘉, “應用差分干涉對比術於微米級透明材質的高度量測方法”,清華大學碩士論文 (2010)
    [21] Eugene Hecht, “OPTICS, Fourth Edition”, Addison Wesley, pp.10-358 (2002)
    [22] S. O. Kasap, “OPTOELECTRONICS AND PHOTONICS Principles and Practices , International Edition”, Prentice-Hall, pp.275-314 (2001)
    [23] Douglas B. Murphy, “Fundamentals of Light Microscopy and Electronic Imaging”, A JOHN WILEY & SONS, INC.
    [24] Michael W. Davidson, Thomas J. Fellers, “Understanding Conjugate Planes and Köhler Illumination”, National High Magnetic Field Laboratory
    [25] Website:College of Natural Resources, University of California Berkeley http://microscopy.berkeley.edu/courses/tlm/condenser/optics.html
    [26] R. S. Longhurst, “Geometrical and Physical Optics”, Longman Inc., New York, pp.533-539 (1973)
    [27] 趙凱華, 鍾錫華, “光學”, 格致圖書公司, pp.550-557 (1997)
    [28] Kumiko Otaki, Edogawa-Ku, “Differential Interference Microscope”, Unite States Patent, (2000.5.7)
    [29] Tatsuro Otaki, Kumiko Otaki, “Transmission Illumination Type Differential Interference Microscope”, Unite States Patent, (2003.4.15)
    [30] C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC Microscopy Using a Geometric Phase Shifter”, Proc. SPIE, vol.2984, pp.72-81 (1997)
    [31] Chrysanthe Preza, “Rotational-diversity Phase Estimation From Differential Interference Contrast Microscopy im”, J. Opt. Soc. Am. A, vol.17, no.3 ( 2000.3)
    [32] Michael Shribak and Shinya Inoué, “Orientation-independent Differential Interference Contrast Microscopy”, Applied Optics, vol.45, no.3 (2006/1/20)
    [33] M. Shribak, “Orientation-independent Differential Interference Contrast Microscopy Technique and Device”, U.S. patent application (2005/7/14)
    [34] M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. Cogswell, “Linear Phase Imaging Using Differential Interference Contrast Microscopy” , J. Microsc., vol. 214, pp.7-12 (2004)
    [35] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural Demodulation of Two-dimensional Fringe Patterns. I. General Background of the Spiral Phase Quadrature Transform” , J. Opt. Soc. Am. A, vol.18, no.8, pp.1862-1870 (2001)
    [36] K. G. Larkin, “Natural Demodulation of Two-dimensional Fringe Patterns. II. Stationary Phase Analysis of the Spiral Phase Quadrature Transform”, J. Opt. Soc. Am. A, vol.18, no.8, pp.1871-1881 (2001)
    [37] Delbert L. Lessor, John S. Hartman, and Richard L. Gordon, “Quantitative Surface Topography Determination by Nomarski Reflection Microscopy. 1. Theory”, J. Opt. Soc. Am., vol.69, no.2 (1979/2)
    [38] Hiroshi Ishiwata, Masahide Itoh, Toyohiko Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope”, Optics Communications, pp.117–126 (2006)
    [39] J.Z. Pan, D.B. Zhu, “Mesoscopic Details of Crack Tip Deformation Field by Application of Differential Interference Contrast Method”, Theoretical and Applied Fracture Mechanics, vol.41, pp. 147–162 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE