簡易檢索 / 詳目顯示

研究生: 盧逸滄
Lu, Yi-Cang
論文名稱: 電鍍溫度與電流密度對銅奈米線微結構影響之研究
Influence of electrodeposition temperature and current density on microstructure of Cu nanowires
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 廖建能
甘炯耀
吳子嘉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 54
中文關鍵詞: 銅奈米線結晶方向雙晶結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅常使用於積體電路中,作為連結各元件的導線,而隨著奈米製程的引進,瞭解銅在奈米尺度下所呈現的性質也日趨重要,因此近年來有關奈米線的研究也愈來愈多。材料特性與材料微結構有密切的關係,例如不同的結晶方向會使材料呈現不同的機械性質及導電性質,對於銅在積體電路及奈米元件的應用上扮演了重要角色。雙晶是材料常見的微結構之一,有文獻指出,若在銅內部引入了奈米雙晶結構,不僅能大幅提升銅的機械強度,同時也保持了良好的導電性,且奈米雙晶結構的存在也能夠使銅的抗電遷移性質提升。電鍍過程中,電流密度及電鍍液溫度影響了銅原子在沉積過程的成核行為,進而影響銅的微結構生成。電流的波形也是影響材料微結構的重要因素,而文獻也指出,採用脈衝電流的電鍍製程有較高的機率製備出雙晶銅。然而目前關於電鍍液溫度及電流密度對材料結晶方向及雙晶結構生成的研究,仍是以電鍍銅膜較多。關於電鍍奈米線的資訊較為缺乏,其中有關脈衝電鍍系統的研究為數更是稀少,故本實驗致力於研究在脈衝電鍍系統中,電鍍液溫度及電流密度對銅奈米線的結晶方向及雙晶結構生成之影響。
    本實驗分別利用 x-ray 結晶繞射儀及穿透式電子顯微鏡分析銅奈米線的結晶方向及雙晶結構生成的情形。研究結果發現,在高電流密度下,降低電鍍液溫度有助於提升銅奈米線的 (111) 晶面繞射強度,同時奈米線內部的平均雙晶間距也會下降;而在低溫環境中,提高電流密度也會提升銅奈米線的 (111) 晶面繞射強度,而奈米線內部的平均雙晶間距也隨之下降。電流密度及電鍍液溫度對銅奈米線微結構的影響機制可由在不同電鍍條件下所造成的工作電壓變化,結合應力累積與應力釋放的理論來探討。


    Copper is often used as a interconnect material with the introduction of nano-processing. Therefore, it is important to understand the properties of copper in nanoscale, such as nanowires. Properties of material are closely related to its microstructure. For example, different crystal orientation may affect mechanical and electrical properties of materials and their applicability on integrated circuits and nano-devices. Twin structure is one of the microstructure in material. Nano-twinned copper is known to have high mechanical strength, decent electrical conductivity, and better electromigration resistance. During electrodeposition, deposition parameters such as current density and deposition temperature can greatly influence the microstructure of deposited material. Current waveform is also a factor which may affect the microstructure of deposited materials. It is generally believed that pulsed electrodeposition is an appropriate method to deposit twinned copper films. However, research about the influence of deposition temperature and current density for microstructure is mostly related to copper thin film system. The studies on the electrodeposited nanowires are limited especially for the pulsed electrodeposition system. Therefore, the objective of this study is to investigate how deposition temperature and current density affect crystal orientation and formation of twinning structure of copper nanowires in pulsed electrodeposition system.
    X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to analyze the crystal orientation and twin structure formation of copper nanowires, respectively. Experiment results show that the (111) crystal plane diffraction intensity of copper nanowires increases, but the average twin spacing of copper nanowires decreases with the decrease of electrolyte temperature. Moreover, with increasing current density, the (111) crystal plane diffraction intensity of copper nanowires increases, while the average twin spacing of copper nanowires decrease. The relationship between electrodeposition parameters and microstructure of copper nanowires is discussed by considering the working voltage variation at different deposition conditions and the stress induction / relaxation theory.

    摘要................................................................I 英文摘要...........................................................II 誌謝...............................................................IV 目錄...............................................................V 圖目錄............................................................VII 表目錄.............................................................X 第一章、緒論........................................................1 1.1 背景簡介....................................................1 1.2 研究動機....................................................3 第二章、文獻回顧....................................................4 2.1 陽極氧化鋁模板輔助電鍍......................................4 2.2 電鍍參數對奈米線優選方向的影響..............................5 2.2.1 電流密度...............................................5 2.2.2 電鍍液溫度............................................10 2.2.3 電鍍液硫酸濃度........................................11 2.3 電鍍雙晶...................................................13 第三章、實驗步驟....................................................17 3.1 實驗設計與流程.............................................17 3.2 實驗設備與儀器.............................................22 第四章、結果與討論..................................................25 4.1 電鍍液溫度及電流密度對奈米線優選方向的影響.................26 4.1.1 溫度及電流密度效應....................................26 4.1.2 溫度及電流密度效應的機制探討..........................29 4.2電鍍液溫度及電流密度對銅奈米線雙晶結構生成的影響............42 4.2.1 溫度效應..............................................42 4.2.2 電流密度效應..........................................45 第五章、結論.......................................................50 參考文獻...........................................................52

    1. Tu, K.N., Recent advances on electromigration in very-large-scale-integration of interconnects. Journal of Applied Physics, 2003. 94(9): p. 5451.
    2. Chen, K.C., W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-9.
    3. Lu, L., Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-6.
    4. Lu, L., X. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper. Science, 2009. 323(5914): p. 607-610.
    5. Cui, B.Z., K. Han, Y. Xin, D.R. Waryoba, and A.L. Mbaruku, Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Materialia, 2007. 55(13): p. 4429-4438.
    6. Riveros, G., H. Gómez, A. Cortes, R.E. Marotti, and E.A. Dalchiele, Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Applied Physics A, 2004. 81(1): p. 17-24.
    7. Gao, T., G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, and L.D. Zhang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Applied Physics A Materials Science & Processing, 2001. 73(2): p. 251-254.
    8. Gao, T., G.W. Meng, Y.W. Wang, S.H. Sun, and L.D. Zhang, Electrochemical synthesis of copper nanowires. Journal of Physics: Condensed Matter, 2002. 14: p. 355-363.
    9. Molares, M.E.T., J. Brötz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, and J. Vetter, Etched heavy ion tracks in polycarbonate as template for copper nanowires. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001. 185: p. 192-197.
    10. Pang, Y.T., G.W. Meng, Y. Zhang, Q. Fang, and L.D. Zhang, Copper nanowire arrays for infrared polarizer. Applied Physics A: Materials Science & Processing, 2003. 76(4): p. 533-536.
    11. Zhong, S., T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition. Small, 2009. 5(20): p. 2265-70.
    12. Duan, J., J. Liu, D. Mo, H. Yao, K. Maaz, Y. Chen, Y. Sun, M. Hou, X. Qu, and L. Zhang, Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates. Nanotechnology, 2010. 21(36): p. 365605.
    13. Lai, M. and D.J. Riley, Templated electrosynthesis of nanomaterials and porous structures. J Colloid Interface Sci, 2008. 323(2): p. 203-12.
    14. Pan, H., H. Sun, C. Poh, Y. Feng, and J. Lin, Single-crystal growth of metallic nanowires with preferred orientation. Nanotechnology, 2005. 16(9): p. 1559-1564.
    15. Tian, M.L., J.G. Wang, J. Kurtz, T.E. Mallouk, and M.H.W. Chan, Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Letters, 2003. 3(7): p. 919-923.
    16. Guo, L. and P.C. Searson, On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochimica Acta, 2010. 55(13): p. 4086-4091.
    17. Sun, H., Y. Yu, X. Li, W. Li, F. Li, B. Liu, and X. Zhang, Controllable growth of electrodeposited single-crystal nanowire arrays: The examples of metal Ni and semiconductor ZnS. Journal of Crystal Growth, 2007. 307(2): p. 472-476.
    18. Kozlov, V.M. and L.P. Bicelli, Texture formation of electrodeposited fcc metals. Materials Chemistry and Physics, 2002. 77: p. 289-293.
    19. Zhang, J., Y. Jin, H. Wang, C. Ye, W. Tong, and H. Wang, Growth and magnetic properties of single crystalline Ni nanowire arrays prepared by pulse DC electrodeposition. Science China Physics, Mechanics and Astronomy, 2011. 54(7): p. 1244-1248.
    20. Wang, X.W., G.T. Fei, X.J. Xu, Z. Jin, and L.D. Zhang, Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays. Journal of Physical Chemistry B 2005. 109: p. 24326-24330.
    21. Xu, D., W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K.N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Applied Physics Letters, 2007. 91(25): p. 254105.
    22. Kelly, J.J., S.H. Goods, A.A. Talin, and J.T. Hachman, Electrodeposition of Ni from Low-Temperature Sulfamate Electrolytes. Journal of The Electrochemical Society, 2006. 153(5): p. C318.
    23. Kongstein, O.E., U. Bertocci, and G.R. Stafford, In Situ Stress Measurements during Copper Electrodeposition on (111)-Textured Au. Journal of The Electrochemical Society, 2005. 152(3): p. C116.
    24. Grujicic, D. and B. Pesic, Electrodeposition of copper : the nucleation mechanisms. Electrochimica Acta, 2002. 47: p. 2901-2912.
    25. Maurer, F., J. Brötz, S. Karim, M.E.T. Molares, C. Trautmann, and H. Fuess, Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology, 2007. 18(13): p. 135709.
    26. Kim, M.J., S.K. Cho, H.-C. Koo, T. Lim, K.J. Park, and J.J. Kim, Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film. Journal of The Electrochemical Society, 2010. 157(11): p. D564

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE