研究生: |
游芷苹 Yu, Chih-Ping |
---|---|
論文名稱: |
可促進血管新生與抑制細胞凋亡之三維幹細胞球體於提昇β細胞移植存活率之應用 Enhancement of β Cell Survival by Using Pro-angiogenic & Anti-apoptotic 3D Stem Cell Spheroids |
指導教授: |
黃玠誠
Huang, Chieh-Cheng |
口試委員: |
李亦宸
魯才德 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 第一型糖尿病 、胰島移植 、幹細胞療法 、三維細胞球體 、血管新生 |
外文關鍵詞: | type 1 diabetes mellitus, islet transplantation, stem cell-based therapy, 3D cell spheroid, angiogenesis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一型糖尿病是一種自體免疫疾病,患者體內的β細胞受免疫系統攻擊而死亡,無法分泌足量的胰島素,進而使得病患失去調節血糖的能力。注射外源性胰島素是臨床常用的處置方式,然而該方法仍無法使血糖維持正常生理恆定,且造成病患生活不便。臨床研究結果顯示,胰島移植是第一型糖尿病的有效療法,可使患者本身恢復自行分泌胰島素的能力,不須依賴施打外源性胰島素來控制病情,能避免許多因糖尿病及施打胰島素而產生的併發症,並大大改善病人的生活便利性。然而目前胰島移植療法的施行率與成功率仍低,除了捐贈數量不足以外,主要原因是胰島細胞移植至肝門靜脈後,會被血液所介導的免疫反應攻擊,使得胰島細胞的存活率及功能下降。皮下組織是另一個可能的移植位置,但該區域的初始血管密度不足,無法迅速提供胰島細胞生存所需的養分及氧氣。為了解決上述問題,本論文結合臍帶血間葉幹細胞與人類臍帶靜脈內皮細胞,製備兩者均勻混合之三維幹細胞球體,希望藉其誘導血管新生及促進細胞存活等能力,提升胰島細胞移植至皮下組織後的存活率。在體外實驗中,本研究製備出三維幹細胞球體,並以免疫螢光染色、管狀形成實驗與條件培養基測試等方式證明其具有良好的誘導血管生成與促進細胞存活之潛能。動物實驗部分,我們將三維幹細胞球體與胰島素瘤細胞株MIN6細胞共同移植至小鼠皮下部位。活體冷光影像系統觀察結果顯示,與三維幹細胞球體共同移植的MIN6細胞存活情形相當良好。而由組織切片免疫染色結果可知,三維幹細胞球體可有效提升植入細胞周圍的血管新生情形,使MIN6細胞能夠在皮下部位存活並製造胰島素。由以上實驗結果可知,三維幹細胞球體可有效改善胰島細胞皮下移植後的存活率,未來或有被運用於胰島移植治療上的潛能。
Islet transplantation has been demonstrated as a promising therapy for Type 1 diabetes mellitus in addition to insulin treatment. Although offering advantages of minimally invasive operating procedure and easy access for graft monitoring, subcutaneous transplantation of islet only exhibited limited therapeutic outcomes, which can be attributable to the inadequate capability of skin tissue to foster revascularization in a short period. In this work, we fabricated three-dimensional (3D) cell spheroids composed of umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells. We hypothesize that these spheroids can induce local angiogenesis and preventing graft death to enhance the graft survival rates. According to our in vitro results, the 3D stem cell spheroids could induce neovascularization by direct formation of vessel-like structures and secretion of pro-angiogenic growth factors. Moreover, the production of pro-survival factors by the 3D stem cell spheroids was observed. The 3D stem cell spheroids and MIN6 cells were co-transplanted in subcutaneous tissue of a mouse model. Enhanced graft survival was demonstrated by tracing the bioluminescence using an in vivo imaging system. Additionally, the expression of insulin was increased significantly, as indicated by our histological analyses. These experimental data revealed the efficacy of the 3D stem cell spheroids in promoting the survival and function of subcutaneously transplanted β cells.
1. Weaver, J.D., et al., Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017. 3(6).
2. Jun, Y., et al., Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials, 2014. 35(17): p. 4815-4826.
3. Van Belle, T.L., K.T. Coppieters, and M.G. Von Herrath, Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiological Reviews, 2011. 91(1): p. 79-118.
4. Kopan, C., et al., Approaches in immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Frontiers in Immunology, 2018. 9.
5. Aghazadeh, Y. and M.C. Nostro, Cell Therapy for Type 1 Diabetes: Current and Future Strategies. Current Diabetes Reports, 2017. 17(6).
6. Shapiro, A.M.J., M. Pokrywczynska, and C. Ricordi, Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 2017. 13(5): p. 268-277.
7. Johansson, H., et al., Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes, 2005. 54(6): p. 1755-1762.
8. Komatsu, H., et al., Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site. American Journal of Transplantation, 2018. 18(4): p. 832-842.
9. Kanak, M.A., et al., Inflammatory Response in Islet Transplantation. International Journal of Endocrinology, 2014.
10. Saudek, F., et al., Magnetic Resonance Imaging of Pancreatic Islets Transplanted Into the Liver in Humans. Transplantation, 2010. 90(12): p. 1602-1606.
11. Shin, J.Y., et al., Transplantation of Heterospheroids of Islet Cells and Mesenchymal Stem Cells for Effective Angiogenesis and Antiapoptosis. Tissue Engineering Part A, 2015. 21(5-6): p. 1024-1035.
12. Cantarelli, E. and L. Piemonti, Alternative Transplantation Sites for Pancreatic Islet Grafts. Current Diabetes Reports, 2011. 11(5): p. 364-374.
13. Pepper, A.R., et al., Revascularization of Transplanted Pancreatic Islets and Role of the Transplantation Site. Clinical & Developmental Immunology, 2013.
14. Veriter, S., P. Gianello, and D. Dufrane, Bioengineered Sites for Islet Cell Transplantation. Current Diabetes Reports, 2013. 13(5): p. 745-755.
15. Mundra, V., I.C. Gerling, and R.I. Mahato, Mesenchymal Stem Cell-Based Therapy. Molecular Pharmaceutics, 2013. 10(1): p. 77-89.
16. Madec, A.M., et al., Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009. 52(7): p. 1391-1399.
17. Abdi, R., et al., Immunomodulation by mesenchymal stem cells - A potential therapeutic strategy for type 1 diabetes. Diabetes, 2008. 57(7): p. 1759-1767.
18. Duprez, I.R., et al., Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation. Upsala Journal of Medical Sciences, 2011. 116(1): p. 8-17.
19. Rackham, C.L., et al., Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia, 2011. 54(5): p. 1127-1135.
20. Meirelles, L.D., et al., Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 2009. 20(5-6): p. 419-427.
21. Jain, R.K., Molecular regulation of vessel maturation. Nature Medicine, 2003. 9(6): p. 685-693.
22. Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242-248.
23. Kunder, C.A., A.L. St John, and S.N. Abraham, Mast cell modulation of the vascular and lymphatic endothelium. Blood, 2011. 118(20): p. 5383-5393.
24. Staton, C.A., et al., Current methods for assaying angiogenesis in vitro and in vivo. International Journal of Experimental Pathology, 2004. 85(5): p. 233-248.
25. Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005. 23(7): p. 879-884.
26. Melero-Martin, J.M., et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 2008. 103(2): p. 194-202.
27. Traktuev, D.O., et al., Robust Functional Vascular Network Formation In Vivo by Cooperation of Adipose Progenitor and Endothelial Cells. Circulation Research, 2009. 104(12): p. 1410-U320.
28. Koike, N., et al., Creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138-139.
29. Liang, H.F., et al., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004. 5(5): p. 1917-1925.
30. Chen, C.H., et al., Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006. 7(3): p. 736-743.
31. Bromberg, L.E. and E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998. 31(3): p. 197-221.
32. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews, 2012. 64: p. 154-162.
33. Yang, M.J., et al., Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules, 2007. 8(9): p. 2746-2752.
34. Lee, W.Y., et al., The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009. 30(29): p. 5505-5513.
35. Wang, C.C., et al., Spherically Symmetric Mesenchymal Stromal Cell Bodies Inherent with Endogenous Extracellular Matrices for Cellular Cardiomyoplasty. Stem Cells, 2009. 27(3): p. 724-732.
36. Chen, C.H., et al., Construction and characterization of fragmented mesenchymal-stem-cell sheets for intramuscular injection. Biomaterials, 2007. 28(31): p. 4643-4651.