研究生: |
林晉平 |
---|---|
論文名稱: |
電漿奈米天線增益光學對掌性及圓二色性 Plasmonic nanoantennas for optical chirality and circular dichroism enhancement |
指導教授: | 黃哲勳 |
口試委員: |
黃承彬
張世慧 黃哲勳 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 電漿奈米天線 、光學對掌性 、圓二色性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於圓二色光譜的訊號非常微弱,本論文利用時域有限差分法模擬透過電漿奈米天線來增益光學對掌性以提升圓二色光譜的訊號。我們設計擁有傾斜間隙的電漿奈米天線,藉由改變電漿奈米天線的長度使之與入射光達成共振時,可以在間隙中形成與入射磁場平行、相位差為π⁄2且高度增強的電場,以產生增益的光學對掌性。另一方面,改變間隙的傾斜角度亦會影響光學對掌性增益的大小。因此,透過改變電漿奈米天線的長度及間隙的傾斜角度,我們可以調控光學對掌性的增益情形。此外,我們也模擬非對稱十字型天線上方之光學對掌性增益值對介電物質的影響。
實驗方面,我們已自行架設了腔體震盪光譜系統。腔體震盪光譜擁有較高的靈敏度,且結合全反射還可以獲得更高的訊雜比。未來,結合腔體震盪光譜與我們所設計的傾斜間隙電漿奈米天線或非對稱十字型天線,我們可以不需要圓偏振光,透過線偏振光即可獲得增益之對掌性分子的圓二色光譜訊號。
Due to the weak signal of circular dichroism(CD) spectrum, this thesis uses finite-difference time-domain(FDTD) to simulate that enhanced optical chirality produced by plasmonic nanoantenna can improve CD signals. We present a design of plasmonic nanoantenna which has slant gap. When plasmonic nanoantenna at resonance by varying the total antenna length, the gap generates highly enhanced electric field that parallel to impinging magnetic field with a phase delay of π⁄2, lead to enhanced optical chirality. On the other hand, tuning the slant angle of the gap also has an influence on enhanced optical chirality. Thus, we can manipulate the enhancement of optical chirality by tuning the total length and the slant angle of plasmonic nanoantenna. Besides, we also show that asymmetric cross antenna can generate optical chirality above the antenna and interact with the dielectric material.
We build cavity ring-down spectroscopy(CRDS) for experiment. CRDS has high sensitivity and it can combine with total internal reflection to have higher signal to noise ratio. In the future, combine CRDS with slant gap plasmonic nanoantenna or asymmetric cross antenna, we are able to obtain enhanced circular dichroism by linearly polarized light instead of circularly polarized light.
1.Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikrosk. Anat. 1873, 9, 413-468.
2.Liebermann, T.; Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. 2000, 171, 115-130.
3.Fort, E.; Grésillon, S. Surface enhanced fluorescence. J. Phys. D: Appl. Phys. 2008, 41, 013001.
4.Ming, T.; Zhao, L.; Yang, Z.; Chen, H.; Sun, L.; Wang, J.; Yan, C. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896-3903.
5.Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 1993, 47, 1497-1502.
6.Kundu, J.; Le, F.; Nordlander, P.; Halas, N. J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 2008, 452, 115-119.
7.Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707-718.
8.Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. Polarization dependence of surface-enhanced raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8, 2497-2502.
9.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601-626.
10.Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scat tering. Science 1997, 275, 1102-1106.
11.Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667-1670.
12.Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 1999, 83, 4357-4360.
13.Barron, L. D. Molecular Light Scattering and Optical Activity. 2nd ed.; Cambridge University Press: New York, 2004.
14.Polavarapu, P. L.; Zhao, C. Vibrational circular dichroism: a new spectroscopic tool for biomolecular structural determination. Fresenius' J. Anal. Chem. 2000, 366, 727-734.
15.Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag 1902, 4, 396-402.
16.Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am. 1941, 31, 213-222.
17.Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874-881.
18.Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag: New York, 1988.
19.Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep 2005, 408, 131-314.
20.Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
21.Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1-87.
22.Ebbesen, T. W.; Genet, C.; Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 2008, 61, 44-50.
23.Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: physics and applications. J. Phys. D: Appl. Phys. 2012, 45, 113001.
24.Biagioni, P.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Cross resonant optical antenna. Phys. Rev. Lett. 2009, 102, 256801.
25.Biagioni, P.; Savoini, M.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys. Rev. B 2009, 80, 153409.
26.Biagioni, P.; Wu, X.; Savoini, M.; Ziegler, J.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Tailoring the interaction between matter and polarized light with plasmonic optical antennas. Proc. SPIE 2011, 7922, 79220C.
27.Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419-422.
28.Greenfield, N. J. Applications of circular dichroism in protein and peptide analysis. Trends Anal. Chem. 1999, 18, 236-244.
29.Yang, N.; Tang, Y.; Cohen, A. E. Spectroscopy in sculpted fields. Nano Today 2009, 4, 269-279.
30.Yang, N.; Cohen, A. E. Local geometry of electromagnetic fields and its role in molecular multipole transitions. J. Phys. Chem. B 2011, 115, 5304-5311.
31.Inoue, Y.; Ramamurthy, V. Chiral Photochemistry. Marcel Dekker: New York, 2004.
32.Lipkin, D. M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 1964, 5, 696-700.
33.Tang, Y.; Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901.
34.Craig, D. P.; Thirunamachandran, T. New approaches to chiral discrimination in coupling between molecules. Theor. Chem. Acc. 1999, 102, 112-120.
35.Tang, Y.; Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333-336.
36.Hendry, E.; Mikhaylovskiy, R. V.; Barron, L. D.; Kadodwala, M.; Davis, T. J. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 2012, 12, 3640-3644.
37.Schäferling, M.; Yin, X.; Giessen, H. Formation of chiral fields in a symmetric environment. Opt. Exp. 2012, 20, 26326-26336.
38.Meinzer, M.; Hendry, E.; Barnes, W. L. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 2013, 88, 041407.
39.Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005, 94, 017402.
40.Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83-90.
41.Biagioni, P.; Huang, J.-S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402.
42.Papakostas, A.; Potts, A.; Bagnall, D. M.; Prosvirnin, S. L.; Coles, H. J.; Zheludev, N. I. Optical manifestations of planar chirality. Phys. Rev. Lett. 2003, 90, 107404.
43.Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401.
44.Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513-1515.
45.Decker, M.; Zhao, R.; Soukoulis, C. M.; Linden, S.; Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 2010, 35, 1593-1595.
46.Quidant, R.; Kreuzer, M. Plasmons offer a helping hand. Nat. Nanotechnol. 2010, 5, 762-763.
47.Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783-787.
48.Schäferling, M.; Dregely, D.; Hentschel, M.; Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2012, 2, 031010.
49.Zhao, Y.; Belkin, M. A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870.
50.Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; García de Abajo, F. J.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128-2133.
51.Valev, V. K.; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517-2534.
52.Frank, B.; Yin, X.; Schäferling, M.; Zhao, J.; Hein, S. M.; Braun, P. V.; Giessen, H. Large-area 3D chiral plasmonic structures. ACS Nano 2013, 7, 6321-6329.
53.Davis, T. J.; Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 2013, 87, 085405.
54.García-Etxarri, A.; Dionne, J. A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B 2013, 87, 235409.
55.O'Keefe, A.; Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum 1988, 59, 2544-2551.
56.Ballard, J.; Strong, K.; Remedios, J. J.; Page, M.; Johnston, W. B. A coolable long path absorption cell for laboratory spectroscopic studies of gases. J. Quant. Spectrosc. Radiat. Transfer 1994, 52, 677-691.
57.Vallance, C. Innovations in cavity ringdown spectroscopy. New J. Chem. 2005, 29, 867-874.
58.Scherer, J. J.; Paul, J. B.; O'Keefe, A.; Saykally, R. J. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams. Chem. Rev. 1997, 97, 25-51.
59.O' Keefe, A.; Scherer, J. J.; Cooksy, A. L.; Sheeks, R.; Heath, J.; Saykally, R. J. Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3. Chem. Phys. Lett. 1990, 172, 214-218.
60.Heath, J. R.; Cooksy, A. L.; Gruebele, M. H. W.; Schmuttenmaer, C. A.; Saykally, R. J. Diode-laser absorption spectroscopy of supersonic carbon cluster beams: the ν3 spectrum of C5. Science 1989, 244, 564-566.
61.Benard, D. J.; Winker, K. B. Chemical generation of optical gain at 471 nm. J. Appl. Phys 1991, 69, 2805-2809.
62.Yu, T.; Lin, M. C. Kinetics of phenyl radical reactions studied by the "cavity-ring-down" method. J. Am. Chem. Soc. 1993, 115, 4371-4372.
63.Hsu, C. Y.; Huang, H. Y.; Lin, K. C. Br 2 elimination in 248-nm photolysis of CF 2 Br 2 probed by using cavity ring-down absorption spectroscopy. J. Chem. Phys. 2005, 123, 134312-134318.
64.Snyder, K. L.; Zare, R. N. Cavity ring-down spectroscopy as a detector for liquid chromatography. Anal. Chem. 2003, 75, 3086-3091.
65.Bechtel, K. L.; Zare, R. N.; Kachanov, A. A.; Sanders, S. S.; Paldus, B. A. Moving beyond traditional UV-visible absorption detection: cavity ring-down spectroscopy for HPLC. Anal. Chem. 2005, 77, 1177-1182.
66.Brewster's angle - Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Brewster's_angle.
67.Encyclopedia of Laser Physics and Technology - Brewster plates. http://www.rp-photonics.com/brewster_plates.html.
68.Pipino, A. C. R.; Hudgens, J. W.; Huie, R. E. Evanescent wave cavity ring-down spectroscopy for probing surface processes. Chem. Phys. Lett. 1997, 280, 104-112.
69.Shaw, A. M.; Hannon, T. E.; Li, F.; Zare, R. N. Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy. J. Phys. Chem. B 2003, 107, 7070-7075.
70.Zalicki, P.; Zare, R. N. Cavity ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 1995, 102, 2708-2717.
71.Muir, R. N.; Alexander, A. J. Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy. Phys. Chem. Chem. Phys 2003, 5, 1279-1283.
72.Romanini, D.; Lehmann, K. K. Ringdown cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys. 1993, 99, 6287-6301.
73.Jongma, R. T.; Boogaarts, M. G. H.; Holleman, I.; Meijer, G. Trace gas detection with cavity ring down spectroscopy. Rev. Sci. Instrum. 1995, 66, 2821-2828.
74.Meijer, G.; Boogaarts, M. G. H.; Jongma, R. T.; Parker, D. H.; Wodtke, A. M. Coherent cavity ring down spectroscopy. Chem. Phys. Lett. 1994, 217, 112-116.
75.Martin, J.; Paldus, B. A.; Zaliki, P.; Wahl, E. H.; Owano, T. G.; Harris, J. S.; Kruger, C. H.; Zare, R. N. Cavity ring-down spectroscopy with Fourier-transform-limited light pulses. Chem. Phys. Lett. 1996, 258, 63-70.
76.Hodges, J. T.; Looney, J. P.; van Zee, R. D. Response of a ringdown cavity to an arbitrary excitation. J. Chem. Phys. 1996, 105, 10278-10288.
77.Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379.
78.Axelrod, D.; Burghardt, T. P.; Thompson, N. L. Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 1984, 13, 247-268.
79.Axelrod, D.; Hellen, E. H.; Fulbright, R. M. In Topics in Fluorescence Spectroscopy: Biochemical Applications, Lakowicz, J. R., Ed. Kluwer Academic Publishers: New York, 2002; Vol. 3.
80.Newport Corporation. http://www.nxtbook.com/nxtbooks/newportcorp/resource2011/#/1448.
81.Berden, G.; Engeln, R. Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley-Blackwell: New York, 2009.
82.CRD Optics, Inc. - Cavity Ringdown Components. http://www.crd-optics.com/crd-mirrors-vis.html.
83.Hofstetter, H.; Hofstetter, O.; Schurig, V. Rapid separation of enantiomers in perfusion chromatography using a protein chiral stationary phase. J. Chromatogr., A 1997, 764, 35-41.
84.Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K. Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett. 2010, 10, 3596-3603.
85.Liu, C.-H.; Chen, C.-H.; Chen, S.-Y.; Yen, Y.-T.; Kuo, W.-C.; Liao, Y.-K.; Juang, J.-Y.; Kuo, H.-C.; Lai, C.-H.; Chen, L.-J.; Chueh, Y.-L. Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell. Nano Lett. 2011, 11, 4443-4448.
86.Haldar, A.; Maity, S.; Manik, N. B. Study on typical behavior of transient nature (I-t)and hysterisis nature of I–V characteristics of dye doped solid state thin film photoelectrochemical cell. Ionics 2007, 13, 267-272.
87.Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 1996, 273, 1686-1688.
88.de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 2004, 304, 278-281.
89.Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 1992, 92, 741-770.
90.Ohkubo, K.; Hamada, T.; Watanabe, M. Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione}. J. Chem. Soc., Chem. Commun., 1993, 1070-1072.