研究生: |
那力士 Naresh, Kuthala |
---|---|
論文名稱: |
利用奈米材料調控硼中子捕獲治療及光動力於治療腫瘤上之應用 Nanomaterial-Mediated Boron Neutron Capture Therapy and Photodynamic Therapy for the Destruction of Tumors |
指導教授: |
黃國柱
Hwang, Kuo-Chu |
口試委員: |
趙瑞益
Chao, Jui-I 袁俊傑 Yuan, Chiun-Jye 江啟勳 Chiang, Chi-Shiun 宋信文 Sung, Hsing-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 184 |
中文關鍵詞: | 硼中子俘獲療法 、光動力療法 |
外文關鍵詞: | Boron neutron capture therapy, Photodynamic therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近幾年來,藉由奈米材料進行光動力治療(photodynamic therapies)及光熱治療(photodynamic therapies)達到診斷及治療癌症的方法,已經成為熱門的研究主題且具備根除癌症的潛力,使該領域備受重視。光照治療(phototherapy)使用的探針能夠有效地吸收光能,進而產生活性氧物質(reactive oxygen species)及熱能,達到殺死惡性癌細胞的效果。在許多文獻中,作者利用紫外光及可見光達到破壞癌細胞的效果,由於紫外光和可見光在人體的穿透深度較淺,限制了其在臨床上的應用。具有吸收第一生物窗及第二生物窗波長的光照治療試劑的相關研究較少,此外也沒有研究探討關於第三生物窗內的光動力治療,為了達到診療人體較深處的癌細胞,發展此類奈米材料的研究平台愈發重要。在眾多的材料中,以奈米金結構在近紅外光區對癌細胞的治療最廣為討論。然而,光在人體內的穿透深度依然有限,因此對於一些埋藏在體內較深處的癌細胞,如: 膠質母細胞瘤,胰腺癌和肺腺癌等無法使用常見的光照治療。為了治療此類癌症,因而建立了硼中子捕獲治療的方法,而利用奈米材料進行硼中子捕獲治療的相關研究依然有限,因此本論文將對此作深入探討。
第一章中,利用在硼10豐富的奈米粒子表面上修飾精甘天冬氨酸肽(RGD peptide)且其上以FITC標定,故將此材料命名為10BSGRF NPs,此奈米粒子能通過血腦屏障並標靶性地作用於多形性膠質母細胞瘤(Glioblastoma Multiforme)上,此材料能順利進入癌細胞內,平均每克的細胞內含有50.5微克的硼10。利用10BSGRF NPs不僅能提高核磁共振成像的對比度,並成功地抑制小腦腫瘤生長,將小鼠的半生期從22天(對照組)延長至39天。
第二章中,藉由微波合成硼10豐富的磷酸硼奈米粒子(10BPO4 NPs),其大小約為50奈米,並利用此材料對頭部和頸部的癌症進行標靶性治療。此材料具有良好的藥物傳遞性,平均每克細胞中含有63微克的硼10,且其對頭部頸部的癌細胞破壞性也優於臨床上使用的硼中子捕獲治療藥物(BPA-F)。為了提升細胞對磷酸硼奈米粒子的包吞作用,在奈米粒子表面上修飾anti-EGFR抗體,在體外測試中,在修飾anti-EGFR抗體後的磷酸硼奈米粒子條件下,頭頸部癌細胞致死率高達72 %,遠高於在BPA-F條件下的致死率(30%)。
第三章中,我們合成了獨一無二的金奈米花生(AuNPN),奈米花生的殼層間具有間隙,並在間隙內填滿了氯化鈉,由於氯化鈉具有表面電漿增強特性,因此利用此材料進行癌細胞的治療。實驗中分別合成間隙為2奈米及6.5奈米的金奈米花生,兩者皆具有表面電漿共振增強的效果且吸收峰紅移,但在間隙6.5奈米的材料中更為明顯,且此材料也有較佳的光動力治療及光熱治療效果。透過氯化鈉和奈米花生的交互作用,改變表面電漿共振的特性,使材料在近紅外光的照射下能夠有效抑制生物體內癌細胞的生長。
第四章中,我們發現六硼化鑭奈米立方體(LaB6 CNPs)能夠在第三生物窗中的光照射下產生氫氧自由基,並能在缺氧的環境下進行光動力治療。在體內實驗中,六硼化鑭奈米立方體同時具有光動力治療及光熱治療的能力,可以有效地摧毀具有多重抗藥性的肺癌細胞。六硼化鑭奈米立方體能夠有效地吸收近紅外光並產生單重態氧。此外,這是第一篇探討利用奈米材料對多重抗藥性的肺癌細胞(NCI-H23)進行光動力治療及光熱治療的相關研究
和CT成像。
In the recent years nanotechnology based nanomaterials become pathfinder to diagnose and eradicate complicated cancers through phototherapies like photodynamic (PDT) and photo thermal (PTT) therapies. The phototherapy probe with efficient absorption of light triggers the generation of reactive oxygen species (ROS) and heat to eradicate the malignant tumors. In literature numerous therapeutic models demolish tumors by UV and visible light which will limits their application in clinical view due to their poor penetration depth than the NIR (near infrared) light. The photo therapy agents explored in both the biological window I (650-950 nm), window II (1000-1350 nm) are very rare and no literature explored the PDT in the biological window III (1550-1870 nm), and researchers need to develop such kind of nanoplatforms to treat the deep tissue buried tumors with minimum invasiveness. Among all, the gold nanostructures like AuNRs, Au-nanoshells, Au-nanocages and nanohexapods attracted much interest to treat cancer cells and malignant tumors in NIR biological window I due to the low toxicity levels. Even though, the deep buried tumor like glioblastoma, pancreatic cancer, and lung adenocarcinoma can’t be treated with conventional photodynamic/photo thermal therapy where the light can’t be penetrated such a deep buried cancer tumor cells. To treat such a deep buried tumor alternative therapy model like boron neutron capture therapy with the nanotechnology based platform to be established. To date there are limited amount of reports published on nanotechnology based boron neutron capture therapy.
In the chapter one, we have demonstrated that an unprecedented 10B-enriched (96% 10B enrichment) boron nanoparticle nanomedicine (10BSGRF NPs) surface-modified with a FITC-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at Glioblastoma multiforme brain tumor sites and deliver high therapeutic dosage (50.5 μg 10B/g cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, The 10BSGRF NPs not only can enhance the contrast of MR imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via magnetic resonance (MR) imaging-guided boron neutron capture therapy (BNCT), prolonging the half-life of mice from 22 days (untreated group) to 39 days. This work sheds light on a new way to treat patients with complicated and ‘difficult-to-treat’ brain tumors via MR imaging-guided BNCT.
In the chapter two, we have synthesized 10B rich boron phosphate nanoparticles (10BPO4 NPs) with microwave arcing method with particle size of ~ 50 nm within the single step and this 10B-enriched boron phosphate (96% 10B enrichment) employed as nanomedicine for head and neck cancer tumor targeting ability, which can enables to deliver huge amount (~63 μg/g cells) of 10B accumulation than the clinical BNCT molecular (BPA-F) drugs and exerts higher degree of destruction to the head and neck cancer tumors than the currently using clinical molecular BNCT drug, BPA-F. As the 10B-enriched boron phosphate NPs were modified with anti-EGFR antibody to enable the targeting ability through the EGFR mediated uptake at cell membrane. In vitro cell death (72 %) for 10BPO4-anti-EGFR NPs treated head and neck cancer cells is ~ 2.4 folds higher than (30%) for BPA-F. The mice xenograft BNCT model, 10BPO4-anti-EGFR NPs exerts the higher degree of destruction to the head and neck tumors. The median survival of the BNCT treated mice with 10BPO4-anti-EGFR NPs extends to 75 days is far better than the mice treated with BPA-F (33 days), blank + NR mice (25), and blank mice (23 days).
In the Chapter three, we have explored a unique peanut type gold nano structure called AuNPN with the gaps 2.0 and 6.5 nm by filled with NaCl into the gaps in order to enhance the plasmonic field enhancement and it was further utilized for tumor therapeutic models. As fabricated AuNPN 2.0, AuNPN 6.5 exhibits drastic plasmonic field enhancement by the introduction of NaCl to induce the plasmonic effect in the far near IR region, which pronounced more in the AuNPN 6.5. Interestingly, we observe that, AuNPN 6.5(NaCl) exhibits better therapeutic results by the plasmonic field enhanced photodynamic and photothermal therapy. This plasmonic effect with NaCl AuNPN highlights the in vivo study upon NIR laser irradiation to inhibit the tumor recurrence.
In the chapter four, we have performed that LaB6 CNPs can generate ROS species hydroxyl radical in biological window III to address the unresolved penetration depth issue and hypoxia environment tumors with photodynamic therapy. In the in vivo, LaB6 CNPs can exert combination of photodynamic (PDT) and photothermal (PTT) therapeutic treatment for curing intrinsic multi-drug resistant (MDR) lung tumors completely. Lanthanum Hexaboride (LaB6) cubic nanoparticles can absorb near infra-red (NIR) light (400~1700 nm) very efficiently and sensitize formation of singlet oxygen as well as heat in biological windows II and III. To the best of our knowledge, this is the first literature example of the nanomaterial-mediated photodynamic and photothermal therapy for treating intrinsic multi-drug resistant lung cancers (NCI-H23) with bimodal MR and CT imaging.
1. S. A. Grossman, X. Ye, S. Piantadosi, S. Desideri, L. B. Nabors, M. Rosenfeld, J. Fisher, N. C. Consortium, J Clin Oncol 2009, 27.
2. J. Sul, Y. Odia, W. Zhang, J. Shih, J. A. Butman, D. Hammoud, T. N. Kreisl, F. Iwamoto, H. A. Fine, Neuro-Oncology 2012, 14, 73.
3. J. Sharim, R. Tashjian, N. Golzy, N. Pouratian, J Clin Neurosci 2016, 30, 166.
4. X. Y. Liu, K. J. Sun, H. D. Wang, Y. Y. Dai, Cell Mol Neurobiol 2016, 36, 1197.
5. C. R. Wirtz, F. K. Albert, M. Schwaderer, C. Heuer, A. Staubert, V. M. Tronnier, M. Knauth, S. Kunze, Neurol Res 2000, 22, 354.
6. M. Da Ros, A. L. Iorio, M. Lucchesi, M. Guidi, C. Fonte, C. Favre, L. Genitori, I. Sardi, Neuro-Oncology 2016, 18, 141.
7. S. Pellegatta, M. Eoli, E. Anghileri, S. Pessina, C. Antozzi, S. Frigerio, G. Cantini, M. G. Bruzzone, B. Polio, E. A. Parati, G. Finocchiaro, Cancer Immunol Res 2016, 4.
8. Y. H. Kim, T. Kim, J. D. Joo, J. H. Han, Y. J. Kim, I. A. Kim, C. H. Cancer-Am Cancer Soc 2015, 121, 2926.
9. S. Moller, M. Lundemann, I. Law, H. S. Poulsen, H. B. W. Larsson, S. A. Engelholm, Acta Oncol 2015, 54, 1521.
10. M. A. Garabalino, A. M. Hughes, A. J. Molinari, E. M. Heber, E. C. C. Pozzi, J. E. Cardoso, L. L. Colombo, S. Nievas, D. W. Nigg, R. F. Aromando, M. E. Itoiz, V. A. Trivillin, A. E. Schwint, Radiat Environ Bioph 2011, 50, 199.
11. R. Nano, S. Barni, P. Chiari, T. Pinelli, F. Fossati, S. Altieri, C. Zonta, U. Prati, L. Roveda, A. Zonta, Oncol Rep 2004, 11, 149.
12. E. C. C. Pozzi, V. A. Trivillin, L. L. Colombo, A. M. Hughes, S. I. Thorp, J. E. Cardoso, M. A. Garabalino, A. J. Molinari, E. M. Heber, P. Curotto, M. Miller, M. E. Itoiz, R. F. Aromando, D. W. Nigg, A. E. Schwint, Radiat Environ Bioph 2013, 52, 481.
13. T. Aihara, N. Morita, N. Kamitani, H. Kumada, K. Ono, J. Hiratsuka, T. Harada, Int J Clin Oncol 2014, 19, 437.
14. I. Kato, Y. Fujita, M. Ohmae, Y. Sakurai, M. Suzuki, S. Masunaga, I. Murata, T. Sumi, M. Nakazawa, K. Ono, J Clin Oncol 2014, 32.
15. D. Lim, D. S. C. Quah, M. Leech, L. Marignol, Appl Radiat Isotopes 2015, 106, 237.
16. L. W. Wang, Y. W. Chen, C. Y. Ho, Y. W. H. Liu, F. I. Chou, Y. H. Liu, H. M. Liu, J. J. Peir, S. H. Jiang, C. W. Chang, C. S. Liu, K. H. Lin, S. J. Wang, P. Y. Chu, W. L. Lo, S. Y. Kao, S. H. Yen, Int J Radiat Oncol 2016, 95, 396.
17. H. Yanagie, Eur J Nucl Med Mol I 2014, 41, S334.
18. H. Yanagie, H. Takahashi, Y. Furuya, H. Kumada, T. Nakamura, H. Horiguchi, H. Sugiyama, K. Ono, M. Ono, M. Eriguchi, Cancer Res 2011, 71.
19. F. Faiao-Flores, P. R. P. Coelho, J. Arruda-Neto, D. A. Maria, Appl Radiat Isotopes 2011, 69, 1741.
20. F. Faiao-Flores, P. R. P. Coelho, J. D. T. Arruda-Neto, S. S. Maria-Engler, M. Tiago, V. L. Capelozzi, R. R. Giorgi, D. A. Maria, Plos One 2013, 8.
21. A. E. Rossini, M. A. Dagrosa, A. Portu, G. Saint Martin, S. Thorp, M. Casal, A. Navarro, G. J. Juvenal, M. A. Pisarev, Int J Radiat Biol 2015, 91, 81.
22. R. D. Alkins, P. M. Brodersen, R. N. S. Sodhi, K. Hynynen, Neuro-Oncology 2013, 15, 1225.
23. T. Yamamoto, K. Tsuboi, K. Nakai, H. Kumada, H. Sakurai, A. Matsumura, Transl Cancer Res 2013, 2, 80.
24. G. L. Locher, Am J Roentgenol Radi 1936, 36, 1.
25. S. I. Miyatake, S. Kawabata, R. Hiramatsu, T. Kuroiwa, M. Suzuki, N. Kondo, K. Ono, Neurol Med-Chir 2016, 56, 361.
26. A. Doi, S. Kawabata, K. Iida, K. Yokoyama, Y. Kajimoto, T. Kuroiwa, T. Shirakawa, M. Kirihata, S. Kasaoka, K. Maruyama, H. Kumada, Y. Sakurai, S. I. Masunaga, K. Ono, S. I. Miyatake, J Neuro-Oncol 2008, 87, 287.
27. N. Gupta, R. A. Gahbauer, T. E. Blue, B. Albertson, J Neuro-Oncol 2003, 62, 197.
28. V. I. Bregadze, I. B. Sivaev, S. A. Glazun, Anti-cancer agents in medicinal chemistry 2006, 6, 75.
29. R. H. Pak, F. J. Primus, K. J. Rickard-Dickson, L. L. Ng, R. R. Kane, M. F. Hawthorne, Proc Natnl Acad Sci 1995, 92, 6986.
30. H. Xiong, X. Wei, D. Zhou, Y. Qi, Z. Xie, X. Chen, X. Jing, Y. Huang, Bioconjugate chemistry 2016, 27, 2214.
31. P. J. Kueffer, C. A. Maitz, A. A. Khan, S. A. Schuster, N. I. Shlyakhtina, S. S. Jalisatgi, J. D. Brockman, D. W. Nigg, M. F. Hawthorne, Proc Natnl Acad Sci 2013, 110, 6512.
32. K. C. Hwang, P. D. Lai, C. S. Chiang, P. J. Wang, C. J. Yuan, Biomaterials 2010, 31, 8419.
33. D. Alberti, N. Protti, A. Toppino, A. Deagostino, S. Lanzardo, S. Bortolussi, S. Altieri, C. Voena, R. Chiarle, S. Geninatti Crich, S. Aime, Nanomedicine : nanotechnology, biology, and medicine 2015, 11, 741.
34. Z. Gao, Y. Horiguchi, K. Nakai, A. Matsumura, M. Suzuki, K. Ono, Y. Nagasaki, Biomaterials 2016, 104, 201.
35. H. Xiong, D. Zhou, Y. Qi, Z. Zhang, Z. Xie, X. Chen, X. Jing, F. Meng, Y. Huang, Biomacromolecules 2015, 16, 3980.
36. H. Koganei, M. Ueno, S. Tachikawa, L. Tasaki, H. S. Ban, M. Suzuki, K. Shiraishi, K. Kawano, M. Yokoyama, Y. Maitani, K. Ono, H. Nakamura, Bioconjugate Chem. 2013, 24, 124.
37. W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D. Zhao, J Am Chem Soc 2012, 134, 11864.
38. L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi, J Am Chem Soc 2012, 134, 5722.
39. O. Schnell, B. Krebs, E. Wagner, A. Romagna, A. J. Beer, S. J. Grau, N. Thon, C. Goetz, H. A. Kretzschmar, J. C. Tonn, R. H. Goldbrunner, Brain pathology 2008, 18, 378.
40. T. Sun, Z. Zhang, B. Li, G. Chen, X. Xie, Y. Wei, J. Wu, Y. Zhou, Z. Du, Rad Oncol 2013, 8, 195.
41. D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, J. Shi, ACS Nano 2014, 8, 1231.
42. S. Joshi, A. Ergin, M. Wang, R. Reif, J. Zhang, J. N. Bruce, I. J. Bigio, J Neurooncol 2011, 104, 11.
43. S. Geninatti-Crich, D. Alberti, I. Szabo, A. Deagostino, A. Toppino, A. Barge, F. Ballarini, S. Bortolussi, P. Bruschi, N. Protti, S. Stella, S. Altieri, P. Venturello, S. Aime, Chem. Eur. J. 2011, 17, 8479.
44. C. Achilli, S. Grandi, A. Ciana, G. F. Guidetti, A. Malara, V. Abbonante, L. Cansolino, C. Tomasi, A. Balduini, M. Fagnoni, D. Merli, P. Mustarelli, I. Canobbio, C. Balduini, G. Minetti, Nanomedicine: nanotechnology, biology, and medicine 2014, 10, 589.
45. F.-Y. Yang, Y.-W. Chen, F.-I. Chou, S.-H. Yen, Y.-L. Lin, T.-T. Wong, Future Oncol. 2012, 8, 1361.
46. K. Takahara, T. Inamoto, K. Minami, Y. Yoshikawa, T. Takai, N. Ibuki, H. Hirano, H. Nomi, S. Kawabata, S. Kiyama, S.-I. Miyatake, T. Kuroiwa, M. Suzuki, M. Kirihata, H. Azuma, Plosone 2015, 10, e0136981.
47. J. S. Hill, S. B. Kahl, A. H. Kaye, S. S. Stylli, M. S. Koo, M. F. Gonzales, N. J. Vardaxis, C. I. Johnson, Proc. Nat. Acad. Sci. 1992, 89, 1785.
48. Y. Yura, Y. Fujita, Oral Sci. Int., 2013, 10, 9.
49. R. F. Barth, W. Yang, J. H. Rotaru, M. L. Moeschberger, C. P. Boesel, A. H. Soloway, D. D. Joel, M. M. Nawrocky, K. Ono, J. H. Goodman, Int. J Rad. Oncol., 2012, 47, 209.
50. A. Dagrosa, M. Carpano, M. Perona, L. Thomasz, S. Nievas, R. Cabrini, G. Juvenal, M. Pisarev, Appl. Rad. Isotopes 2011, 69, 1752.
51. S. Obayashi, I. Kato, K. Ono, S.-I. Masunaga, M. Suzuki, K. Nagata, Y. Sakurai, Y. Yura, Oral Oncol., 2004, 40, 474.
52. E. L. Kreimann, M. E. Itoiz, J. Longhino, H. Blaumann, O. Calzetta, A. E. Schwint, Cancer Res. 2001, 61, 8638.
1. C. J. Lin, J. R. Grandis, T. E. Carey, S. M. Gollin, T. L. Whiteside, W. M. Koch, R. L.Ferris, S. Y. Lai, Head & neck 2007, 29, 163.
2. S.H. Chiou, C.C. Yu, C.Y. Huang, S.C. Lin, C.J. Liu, T.H. Tsai, S.H. Chou, C.S. Chien, H.H. Ku, J.F. Lo, Clinical Cancer Research 2008, 14, 4085.
3. L. W. Wang, Y. W. Chen, C. Y. Ho, Y. W. Hsueh Liu, F. I. Chou, Y. H. Liu, H. M. Liu, J. J.Peir, S. H. Jiang, C. W. Chang, C. S. Liu, K. H. Lin, S. J. Wang, P. Y. Chu, W. L. Lo, S. Y. Kao, S. H. Yen, International journal of radiation oncology, biology, physics 2016, 95, 396.
4. S. J. Wong, M. Machtay, Y. Li, Journal of Clinical Oncology 2006, 24, 2653.
5. A. M. Chen, D. G. Farwell, Q. Luu, S. Cheng, P. J. Donald, J. A. Purdy, International Journal of Radiation Oncology*Biology*Physics 2011, 80, 669.
6. G. L. Locher, Am J Roentgenol Radi 1936, 36, 1.
7. L. Kankaanranta, T. Seppälä, H. Koivunoro, P. Välimäki, A. Beule, J. Collan, M.Kortesniemi, J. Uusi-Simola, P. Kotiluoto, I. Auterinen, T. Serèn, A. Paetau, K. Saarilahti, S. Savolainen, H. Joensuu, International Journal of Radiation Oncology, Biology, Physics 2011, 80, 369.
8. L. Kankaanranta, T. Seppälä, H. Koivunoro, K. Saarilahti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Uusi-Simola, P. Välimäki, A. Mäkitie, M. Seppänen, H. Minn, H. Revitzer, M. Kouri, P. Kotiluoto, T. Seren, I. Auterinen, S. Savolainen, H. Joensuu, International Journal of Radiation Oncology, Biology, Physics 2012, 82, e67.
9. D. Haritz, D. Gabel, R. Huiskamp, International journal of radiation oncology, biology, physics 1994, 28, 1175.
10. T. Kageji, S. Nagahiro, B. Otersen, D. Gabel, M. Nakaichi, Y. Nakagawa, Journal of neuro-oncology 2002, 59, 135.
11. M. Carpano, M. Perona, C. Rodriguez, S. Nievas, M. Olivera, G. A. Santa Cruz, D. Brandizzi, R. Cabrini, M. Pisarev, G. J. Juvenal, M. A. Dagrosa, International journal of radiation oncology, biology, physics 2015, 93, 344.
12. T. Aihara, J. Hiratsuka, N. Morita, M. Uno, Y. Sakurai, A. Maruhashi, K. Ono, T. Harada, Head & neck 2006, 28, 850.
13. L. Kankaanranta, K. Saarilahti, A. Makitie, P. Valimaki, M. Tenhunen, H. Joensuu, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2011, 99, 98.
14. K. C. Hwang, P. D. Lai, C. S. Chiang, P. J. Wang, C. J. Yuan, Biomaterials 2010, 31, 8419.
15. N. Kuthala, R. Vankayala, Y. N. Li, C. S. Chiang, K. C. Hwang, Advanced materials 2017, 29.
16. P. J. Kueffer, C. A. Maitz, A. A. Khan, S. A. Schuster, N. I. Shlyakhtina, S. S. Jalisatgi, J. D. Brockman, D. W. Nigg, M. F. Hawthorne, Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 6512.
17. C. Achilli, S. Grandi, A. Ciana, G. F. Guidetti, A. Malara, V. Abbonante, L. Cansolino, C. Tomasi, A. Balduini, M. Fagnoni, D. Merli, P. Mustarelli, I. Canobbio, C. Balduini, G. Minetti, Nanomedicine : nanotechnology, biology, and medicine 2014, 10, 589.
18. S. Geninatti-Crich, D. Alberti, I. Szabo, A. Deagostino, A. Toppino, A. Barge, F. Ballarini, S. Bortolussi, P. Bruschi, N. Protti, S. Stella, S. Altieri, P. Venturello, S. Aime, Chem. Eur. J. 2011, 17, 8479.
19. B. Chang, B. L. Gersten, S. T. Szewczyk, J. W. Adams, Applied Physics A 2007, 86, 83.
20. S. Chen, D. Z. Wang, J. Y. Huang, Z. F. Ren, Applied Physics A 2004, 79, 1757.
21. B. Ozcelik, C. Ergun, Journal of Materials Research 2016, 31, 2789.
22. N. Shawgi, S. Li, S. Wang, Ceramics International 2017, 43, 10554.
23. T. Umberto, M. Z. A., K. Yasuhiro, I. Takahito, O. Manshi, Journal of the American Ceramic Society 2005, 88, 1382.
24. K.Y.M. Zeng Hong, Xu Chang-Ming, Wang Pei-Ling, Zhang Guo-Jun, Journal of Inorganic Materials 2011, 26, 1101.
M. Viale, M. A. Mariggio, M. Ottone, B. Chiavarina, A. Vinella, C. Prevosto, C. Dell'Erba, G. Petrillo, M. Novi, Investigational new drugs 2004, 22, 359.
2. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, CA: a cancer journal for clinicians 2015, 65, 87.
3. J. Liu, L. Zhang, J. Lei, H. Shen, H. Ju, ACS applied materials & interfaces 2017, 9, 2150.
4. W. Fan, P. Huang, X. Chen, Chemical Society reviews 2016, 45, 6488.
5. S. S. Lucky, K. C. Soo, Y. Zhang, Chemical reviews 2015, 115, 1990.
6. F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, The Analyst 2010, 135, 1839.
7. Z. Zhou, J. Song, L. Nie, X. Chen, Chemical Society reviews 2016, 45, 6597.
8. Y. Jang, S. Kim, W. K. Oh, C. Kim, I. Lee, J. Jang, Chemical communications 2014, 50, 15345.
9. Z. Youssef, V. Jouan-Hureaux, L. Colombeau, P. Arnoux, A. Moussaron, F. Baros, J. Toufaily, T. Hamieh, T. Roques-Carmes, C. Frochot, Photodiagnosis and photodynamic therapy 2018.
10. S. S. Lucky, N. M. Idris, K. Huang, J. Kim, Z. Li, P. S. Thong, R. Xu, K. C. Soo, Y. Zhang, Theranostics 2016, 6, 1844.
11. P. Vijayaraghavan, C. H. Liu, R. Vankayala, C. S. Chiang, K. C. Hwang, Advanced materials 2014, 26, 6689.
12. W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, C. S. Yeh, Angewandte Chemie 2010, 49, 2711.
13. T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, G. Q. Xu, Nanoscale 2012, 4, 7712.
14. R. Vankayala, Y. K. Huang, P. Kalluru, C. S. Chiang, K. C. Hwang, Small 2014, 10, 1612.
15. R. Vankayala, C. C. Lin, P. Kalluru, C. S. Chiang, K. C. Hwang, Biomaterials 2014, 35, 5527.
16. J. C. Kah, R. C. Wan, K. Y. Wong, S. Mhaisalkar, C. J. Sheppard, M. Olivo, Lasers in surgery and medicine 2008, 40, 584.
17. U. S. Chung, J. H. Kim, B. Kim, E. Kim, W. D. Jang, W. G. Koh, Chemical communications 2016, 52, 1258.
18. L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li, ACS nano 2012, 6, 8030.
19. L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, X. Gao, ACS nano 2014, 8, 7260.
20. Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.Y. Liu, M. Li, P. Kim, Z.Y. Li, L. V. Wang, Y. Liu, Y. Xia, ACS nano 2013, 7, 2068.
21. S.Eustis, M. A. El-Sayed, Chemical Society reviews 2006, 35, 209.
22. M. S. Yavuz, G. C. Jensen, D. P. Penaloza, T. A. Seery, S. A. Pendergraph, J. F. Rusling, G. A. Sotzing, Langmuir : the ACS journal of surfaces and colloids 2009, 25, 13120.
23. A. Ahmadivand, N. Pala, Applied spectroscopy 2015, 69, 277.
24. Y. W. Ma, Z. W. Wu, L. H. Zhang, J. Zhang, G. S. Jian, S. Pan, Plasmonics 2013, 8, 1351.
25. J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nature Materials 2011, 10, 361.
26. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, Journal of the American Chemical Society 2009, 131, 4253.
27. S. B. Lakshmanan, X. Zou, M. Hossu, L. Ma, C. Yang, W. Chen, Journal of Biomedical Nanotechnology 2012, 8, 883.
28. B. Nikoobakht, M. A. El-Sayed, Chemistry of Materials 2003, 15, 1957.
29. X. Ye, C. Zheng, J. Chen, Y. Gao, C. B. Murray, Nano Letters 2013, 13, 765.
30. B. Jang, J.Y. Park, C.H. Tung, I.H. Kim, Y. Choi, ACS nano 2011, 5, 1086.
31. H. P. Tham, H. Chen, Y. H. Tan, Q. Qu, S. Sreejith, L. Zhao, S. S. Venkatraman, Y. Zhao, Chemical communications 2016, 52, 8854.
32. C. Zhang, B.Q. Chen, Z.Y. Li, Y. Xia, Y.G. Chen, The Journal of Physical Chemistry C 2015, 119, 16836.
33. Y. Hu, R. Wang, S. Wang, L. Ding, J. Li, Y. Luo, X. Wang, M. Shen, X. Shi, Scientific Reports 2016, 6, 28325.
34. Y. Dan, Y. Guixin, Y. Piaoping, L. Ruichan, G. Shili, L. Chunxia, H. Fei, L. Jun, Advanced Functional Materials 2017, 27, 1700371.
35. R. M. Pallares, X. Su, S. H. Lim, N. T. K. Thanh, Journal of Materials Chemistry C 2016, 4, 53.
36. W.K. Lee, S.H. Cha, K.H. Kim, B.W. Kim, J.C. Lee, Journal of Solid State Chemistry 2009, 182, 3243.
37. M.F. Tsai, S.H. G. Chang, F.Y. Cheng, V. Shanmugam, Y.S. Cheng, C.H. Su, C.S. Yeh, ACS nano 2013, 7, 5330.
38. K.W. Hu, T.M. Liu, K.Y. Chung, K.S. Huang, C.T. Hsieh, C.K. Sun, C.S. Yeh, Journal of the American Chemical Society 2009, 131, 14186.
39. M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, R. P. Van Duyne, The Journal of Physical Chemistry Letters 2014, 5, 3125.
1. Jemal A, Siegel R, Xu J & Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians 2010, 60, 277-300.
2. Boolell V, Alamgeer M, Watkins D & Ganju V. The Evolution of Therapies in Non-Small Cell Lung Cancer. Cancers 2015, 7, 1815-1846.
3. Damstrup L, Rygaard K, Spang-Thomsen M & Poulsen H S. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer research 1992, 52, 3089-3093.
4. Haeder M, et al. Epidermal growth factor receptor expression in human lung cancer cell lines. Cancer research 1988, 48, 1132-1136.
5. Nurwidya F, Murakami A, Takahashi F & Takahashi K. Molecular mechanisms contributing to resistance to tyrosine kinase-targeted therapy for non-small cell lung cancer. Cancer biology & medicine 2012, 9, 18-22.
6. Allison R R., et al. Clinical photodynamic therapy of head and neck cancers-A review of applications and outcomes. Photodiagnosis and photodynamic therapy 2005, 2, 205-222.
7. Kato H., et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung cancer 2003, 42, 103-111.
8. Park Y K & Park C H. Clinical efficacy of photodynamic therapy. Obstetrics & gynecology science 2016, 59, 479-488.
9. Huang L, et al. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers in surgery and medicine 2012, 44, 490-499.
10. Lucky S S, Soo K C & Zhang Y. Nanoparticles in Photodynamic Therapy. Chemical Reviews 2015, 115, 1990-2042.
11. Wang S, Gao R, Zhou F & Selke M. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. Journal of Materials Chemistry 2004, 14, 487-493.
12. Bhattacharyya S, Barman M K, Baidya A & Patra A. Singlet Oxygen Generation from Polymer Nanoparticles–Photosensitizer Conjugates Using FRET Cascade. The Journal of Physical Chemistry C 2014, 118, 9733-9740.
13. McKeown S R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. The British journal of radiology 2014, 87, 20130676.
14. Masuda S & Izpisua Belmonte J C. The microenvironment and resistance to personalized cancer therapy. Nature Reviews Clinical Oncology 2012, 10, 79.
15. Bristow R G & Hill R P. Hypoxia, DNA repair and genetic instability. Nature Reviews Cancer 2008, 8, 180.
16. Vaupel P & Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews 2007, 26, 225-239.
17. Brown J M & Giaccia A J. The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy. Cancer research 1998, 58, 1408-1416.
18. Barker H E, Paget J T E, Khan A A & Harrington K J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews Cancer 2015, 15, 409.
19. Semenza G L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863, 382-391.
20. Swartz M A., et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer research 2012, 72, 2473-2480.
21. Chen Q, et al. Improvement of Tumor Response by Manipulation of Tumor Oxygenation During Photodynamic Therapy. Photochemistry and Photobiology 2002, 76, 197-203.
22. Weaver L K, et al. Hyperbaric Oxygen for Acute Carbon Monoxide Poisoning. New England Journal of Medicine 2002, 347, 1057-1067.
23. Fan W, et al. Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH‐/H2O2‐Responsive UCL Imaging and Oxygen‐Elevated Synergetic Therapy. Advanced Materials 2015, 27, 4155-4161.
24. Chen Q, et al. Intelligent Albumin–MnO2 Nanoparticles as pH‐/H2O2‐Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Advanced Materials 2016, 28, 7129-7136.
25. Yao C, et al. Near‐Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH‐/H2O2‐Responsive O2‐Evolving Synergetic Cancer Therapy. Advanced Materials 2018, 30.
26. Zhu H, Li J, Qi X, Chen P & Pu K. Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. Nano Letters 2018, 18, 586-594.
27. Jia Q, et al. A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials 2018, 1706090.
28. Chen H, Tian J, He W & Guo Z. H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. Journal of the American Chemical Society 2015, 137, 1539-1547.
29. Jang S, Imlay J A. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. The Journal of biological chemistry 2007, 282, 929-937.
30. Hemmer E, Benayas A, Legare F & Vetrone F. Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons 2016, 1, 168-184.
31. Zheng D W., et al. Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS Nano 2016, 10, 8715-8722.
32. Zhang C, et al. Multifunctional Bi2WO6 Nanoparticles for CT-Guided Photothermal and Oxygen-free Photodynamic Therapy. ACS Applied Materials & Interfaces 2018, 10, 1132-1146.
33. Fan J X, et al. A metal-semiconductor nanocomposite as an efficient oxygen-independent photosensitizer for photodynamic tumor therapy. Nanoscale Horizons 2017, 2, 349-355.
34. Ding X., et al. Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window. Journal of the American Chemical Society 2014, 136, 15684-15693.
35. Tsai M F., et al. Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy. ACS Nano 2013, 7, 5330-5342.
36. Vijayaraghavan P, Liu C H, Vankayala R, Chiang C S & Hwang K C. Designing Multi‐Branched Gold Nanoechinus for NIR Light Activated Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window. Advanced Materials 2014, 26, 6689-6695.
37. Wu Z C, Li W P, Luo C H, Su C H & Yeh C S. Rattle‐Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25, 6527-6537.
38. Li A, et al. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 2017, 112, 164-175.
39. Yu X, et al. Ultrasmall Semimetal Nanoparticles of Bismuth for Dual-Modal Computed Tomography/Photoacoustic Imaging and Synergistic Thermoradiotherapy. ACS Nano 2017, 11, 3990-4001.
40. Jiang Y, Li J, Zhen X, Xie C & Pu K. Dual‐Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near‐Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials 2018.
41. Wistuba II, Gelovani J G, Jacoby J J, Davis S E & Herbst R S. Methodological and practical challenges for personalized cancer therapies. Nature reviews. Clinical oncology 2011, 8, 135-141.
42. Lee D E et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society reviews 2012, 41, 2656-2672.
43. Hong Y, et al. Size dependent optical properties of LaB6 nanoparticles enhanced by localized surface plasmon resonance. Journal of Rare Earths 2013, 31, 1096-1101.
44. Yorisaki T, et al. Adsorption and dissociation of water on LaB6(100) investigated by surface vibrational spectroscopy. Surface Science 2012, 606, 247-252.
45. Huang K, Leung L, Lim T, Ning Z & Polanyi J C. Vibrational Excitation Induces Double Reaction. ACS Nano 2014, 8, 12468-12475.
46. Crim F F. Chemical dynamics of vibrationally excited molecules: Controlling reactions in gases and on surfaces. Proceedings of the National Academy of Sciences 2008, 105, 12654-12661.
47. Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano today 2014, 9, 223-243.