研究生: |
黃任鵬 Jen-Peng Huang |
---|---|
論文名稱: |
氮化銦/矽異質接面電子特性之研究 Electronic properties of InN/Si hetero-junction |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 氮化銦 、異質接面 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著剩餘的石化能源越來越少,人類積極尋找各種替代的能源。太陽是地球上所有生命的能量來源,而太陽能電池是人類可以直接利用太陽能的有效方法之一。如何使目前的太陽能電池產品往更高的效率邁進,一直是大家的研究目標。
目前市面上大部分的太陽能電池是以多晶矽為材料;矽的能隙(band gap)約為1.12eV,使得太陽能電池只能對大約四分之三的地表輻射進行光電轉換。為了使太陽能電池對太陽輻射的各個波段進行利用,同時使用多種材料的多接面太陽能電池(multi-junction solar cell)就因應而生。而為了將不同的材料整合在同一個太陽能電池裡,異質接面(hetero-junction)的研究就顯得重要。
氮化銦因為擁有優越的電子傳遞特性,是近年來被廣泛研究的重要半導體材料之一。氮化銦的能隙約為0.7eV,與矽相比小了許多,可以將更大範圍的太陽輻射轉換成電流。本論文探討氮化銦與矽形成的異質接面電子特性,希望能將其應用在太陽能電池上,增加現有太陽能電池的效率。
[1] A. E. Becquerel, "Memoire sur les effets électriques produits sous l’influence des rayons solaires", Comt. Rend. Acad. Sci. 9 (1839) 561.
[2] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", Journal of Applied Physics 25 (1954) 676.
[3] W. Hoffmann, "PV solar electricity industry: Market growth and perspective", Solar Energy Materials and Solar Cells 90 (2006) 3285-3311.
[4] A. F. B. Braga, S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin and P. R. Mei, "New processes for the production of solar-grade polycrystalline silicon: A review", Solar Energy Materials and Solar Cells 92 (2008) 418-424.
[5] Martin A. Green, K. Emery, Y. Hishikawa and W. Warta, "Short Communication Solar cell efficiency tables (Version 31)", Progress in Photovoltaics: Research and Applications 16 (2008) 61-67.
[6] A. Goetzberger, C. Hebling and H.-W. Schock, "Photovoltaic materials, history, status and outlook", Materials Science and Engineering: R: Reports 40 (2003) 1-46.
[7] S. N. Mohammad, A. A. Salvador and H. Morkoc, "Emerging gallium nitride based devices", Proceedings of the IEEE 83 (1995) 1306-1355.
[8] J. Wu and W. Walukiewicz, "Band gaps of InN and group III nitride alloys", Superlattices and Microstructures 34 (2003) 63-75.
[9] S. Gwo, C. L. Wu, C. H. Shen, H. W. Lin, H. Y. Chen and H. Ahn, "InN-on-Si heteroepitaxy: growth, optical properties, and applications", Proceedings of the SPIE 6134 (2006) 61340L.
[10] G. Parish, M. Hansen, B. Moran, S. Keller, S. P. DenBaars and U. K. Mishra, "AlGaN/GaN solar-blind ultraviolet photodiodes on SiC substrate", High Performance Devices, 2000. Proceedings. 2000 IEEE/Cornell Conference on (2000) 215-224.
[11] C. A. Gueymard, D. Myers and K. Emery, "Proposed reference irradiance spectra for solar energy systems testing", Solar Energy 73 (2002) 443-467.
[12] I. M. Dharmadasa, "Third generation multi-layer tandem solar cells for achieving high conversion efficiencies", Solar Energy Materials and Solar Cells 85 (2005) 293-300.
[13] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, L. Hai, J. S. William, S. Yoshiki and N. Yasushi, "Unusual properties of the fundamental band gap of InN", Applied Physics Letters 80 (2002) 3967-3969.
[14] R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu and W. J. Schaff, "Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys", physica status solidi (a) 203 (2006) 42-49.
[15] W. Walukiewicz, J.W. Ager III, K.M. Yu, Z. Liliental-Weber, J. Wu, S.X. Li, R.E. Jones and J. D. Denlinger, "Structure and electronic properties of InN and In-rich group III-nitride alloys", Journal of Physics D: Applied Physics 39 (2006) R83-R99.
[16] A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, "Indium nitride (InN): A review on growth, characterization, and properties", Journal of Applied Physics 94 (2003) 2779-2808.
[17] S. N. Mohammad and H. Morko, "Progress and prospects of group-III nitride semiconductors", Progress in Quantum Electronics 20 (1996) 361-525.
[18] V. Lebedev, F. M. Morales, V. Cimalla, J. G. Lozano, D. González, M. Himmerlich, S. Krischok, J. A. Schaefer and O. Ambacher, "Correlation between structural and electrical properties of InN thin films prepared by molecular beam epitaxy", Superlattices and Microstructures 40 (2006) 289-294.
[19] T. L. Tansley and C. P. Foley, "Electron mobility in indium nitride", Electronics Letters 20 (1984) 1066-1068.
[20] T. L. Tansley and C. P. Foley, "Optical band gap of indium nitride", Journal of Applied Physics 59 (1986) 3241-3244.
[21] H. J. Hovel and J. J. Cuomo, "Electrical and Optical Properties of rf-Sputtered GaN and InN", Applied Physics Letters 20 (1972) 71-73.
[22] K. Osamura, S. Naka and Y. Murakami, "Preparation and optical properties of Ga1 - xInxN thin films", Journal of Applied Physics 46 (1975) 3432-3437.
[23] S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang and J. T. Hsu, "Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature", Applied Physics Letters 84 (2004) 3765-3767.
[24] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, "Optical bandgap energy of wurtzite InN", Applied Physics Letters 81 (2002) 1246-1248.
[25] V.Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova and J. Graul, "Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap", physica status solidi (b) 229 (2002) r1-r3.
[26] V.Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto and E. E. Haller, "Band Gap of Hexagonal InN and InGaN Alloys", physica status solidi (b) 234 (2002) 787-795.
[27] L. F. J. Piper, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, "Origin of the n-type conductivity of InN: The role of positively charged dislocations", Applied Physics Letters 88 (2006) 252109-3.
[28] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, "Intrinsic Electron Accumulation at Clean InN Surfaces", Physical Review Letters 92 (2004) 036804.
[29] I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, J. Furthmüller and F. Bechstedt, "Origin of electron accumulation at wurtzite InN surfaces", Physical Review B 69 (2004) 201307.
[30] T. D. Veal, I. Mahboob, L. F. J. Piper, C. F. McConville, H. Lu and W. J. Schaff, "Indium nitride: Evidence of electron accumulation", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22 (2004) 2175-2178.
[31] A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, "Metalorganic chemical vapor deposition growth of InN for InN/Si tandem solar cell", Solar Energy Materials and Solar Cells 35 (1994) 53-60.
[32] E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung and A. Cartwright, "InN: A material with photovoltaic promise and challenges", Journal of Crystal Growth 288 (2006) 218-224.
[33] M. Yoshimoto, T. nakano, T. Yamashita, K. Suzuki and J. Saraie, "MBE growth of InN on Si toward Hole-Barrier Structure in Si Devices", Proc. Int. Workshop on Nitride Semiconductors (2000) 186-189.
[34] Masahiro Yoshimoto, Y. Yamamoto and J. Saraie, "Fabrication of InN/Si heterojunctions with rectifying characteristics", physica status solidi (c) 0 (2003) 2794-2797.
[35] T. Yamaguchi, C. Morioka, K. Mizuo, M. Hori, T. Araki, Y. Nanishi and A. Suzuki, "Growth of InN and InGaN on Si substrate for solar cell applications", Compound Semiconductors: Post-Conference Proceedings, 2003 International Symposium on (2003) 214-219.
[36] W. Shockley, "Circuit Element Utilizing Semiconductive Material", U.S. Pat. 2569347.
[37] H. Kroemer, "Theory of a Wide-Gap Emitter for Transistors", Proceedings of the IRE 45 (1957) 1535-1537.
[38] D. A. Jenny, "The Status of Transistor Research in Compound Semiconductors", Proceedings of the IRE 46 (1958) 959-968.
[39] R. L. Anderson, "Experiments on Ge-GaAs heterojunctions", Solid-State Electronics 5 (1962) 341-344.
[40] C. Mailhiot and C. B. Duke, "Many-electron model of equilibrium metal-semiconductor contacts and semiconductor heterojunctions", Physical Review B 33 (1986) 1118.
[41] J. O. McCaldin, T. C. McGill and C. A. Mead, "Correlation for III-V and II-VI Semiconductors of the Au Schottky Barrier Energy with Anion Electronegativity", Physical Review Letters 36 (1976) 56.
[42] R. Dingle, W. Wiegmann and C. H. Henry, "Quantum States of Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs Heterostructures", Physical Review Letters 33 (1974) 827.
[43] J. L. Freeouf and J. M. Woodall, "Schottky barriers: An effective work function model", Applied Physics Letters 39 (1981) 727-729.
[44] J. L. Freeouf and J. M. Woodall, "Defective heterojunction models", Surface Science 168 (1986) 518-530.
[45] W. R. Frensley and H. Kroemer, "Theory of the energy-band lineup at an abrupt semiconductor heterojunction", Physical Review B 16 (1977) 2642.
[46] W. A. Harrison, "Elementary theory of heterojunctions", Journal of Vacuum Science and Technology 14 (1977) 1016-1021.
[47] S.-H. Wei and A. Zunger, "Role of d orbitals in valence-band offsets of common-anion semiconductors", Physical Review Letters 59 (1987) 144.
[48] V. Heine, "Theory of Surface States", Physical Review 138 (1965) A1689.
[49] J. Tersoff, "Schottky Barrier Heights and the Continuum of Gap States", Physical Review Letters 52 (1984) 465.
[50] J. Tersoff, "Theory of semiconductor heterojunctions: The role of quantum dipoles", Physical Review B 30 (1984) 4874.
[51] F. Flores and C. Tejedor, "Energy barriers and interface states at heterojunctions", Journal of Physics C: Solid State Physics 12 (1979) 731.
[52] M. Cardona and N. E. Christensen, "Acoustic deformation potentials and heterostructure band offsets in semiconductors", Physical Review B 35 (1987) 6182.
[53] W. A. Harrison and J. Tersoff, "Tight-binding theory of heterojunction band lineups and interface dipoles", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4 (1986) 1068-1073.
[54] M. J. Adams and A. Nussbaum, "A proposal for a new approach to heterojunction theory", Solid-State Electronics 22 (1979) 783-791.
[55] O. von Ross, "Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium", Solid-State Electronics 23 (1980) 1069-1075.
[56] W. E. Pickett and M. L. Cohen, "Self-consistent electronic structure of (110) Ge-ZnSe", Physical Review B 18 (1978) 939.
[57] G. Margaritondo, F. Cerrina, C. Capasso, F. Patella, P. Perfetti, C. Quaresima and F. J. Grunthaner, "ZnSe---Ge heterojunction interface states in the energy region of the valence band discontinuity", Solid State Communications 52 (1984) 495-498.
[58] C. G. Van de Walle and R. M. Martin, "Theoretical study of band offsets at semiconductor interfaces", Physical Review B 35 (1987) 8154.
[59] S. Massidda, B. I. Min and A. J. Freeman, "Interface phenomena at semiconductor heterojunctions: Local-density valence-band offset in GaAs/AlAs", Physical Review B 35 (1987) 9871.
[60] A. Zunger, "Composition-dependence of deep impurity levels in alloys", Physical Review Letters 54 (1985) 849.
[61] J. M. Langer and H. Heinrich, "Deep-Level Impurities: A Possible Guide to Prediction of Band-Edge Discontinuities in Semiconductor Heterojunctions", Physical Review Letters 55 (1985) 1414.
[62] M. J. Caldas, A. Fazzio and A. Zunger, "A universal trend in the binding energies of deep impurities in semiconductors", Applied Physics Letters 45 (1984) 671-673.
[63] H. Kroemer, "Heterostructure devices: A device physicist looks at interfaces", Surface Science 132 (1983) 543-576.
[64] R. S. Bauer and J. C. McMenamin, "Ge--GaAs(110) interface formation", Journal of Vacuum Science and Technology 15 (1978) 1444-1449.
[65] R. W. Grant, J. R. Waldrop and E. A. Kraut, "Observation of the Orientation Dependence of Interface Dipole Energies in Ge-GaAs", Physical Review Letters 40 (1978) 656.
[66] P. Perfetti, D. Denley, K. A. Mills and D. A. Shirley, "Angle-resolved photoemission measurements of band discontinuities in the GaAs-Ge heterojunction", Applied Physics Letters 33 (1978) 667-670.
[67] A. D. Katnani and G. Margaritondo, "Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers", Physical Review B 28 (1983) 1944.
[68] G. Margaritondo, "Comment on ``Theory of semiconductor heterojunctions: The role of quantum dipoles''", Physical Review B 31 (1985) 2526.
[69] C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen and S. Gwo, "Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of ``intrinsic'' band lineup", Applied Physics Letters 92 (2008) 162106-3.
[70] A. Kasic, M. Schubert, Y. Saito, Y. Nanishi and G. Wagner, "Effective electron mass and phonon modes in n-type hexagonal InN", Physical Review B 65 (2002) 115206.
[71] T. Inushima, M. Higashiwaki and T. Matsui, "Optical properties of Si-doped InN grown on sapphire (0001)", Physical Review B 68 (2003) 235204.
[72] A. Zubrilov, M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur "Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe". John Wiley & Sons, Inc., New York, 2001.
[73] C. F. Shih, N. C. Chen, P. H. Chang and K. S. Liu, "Field emission properties of self-assembled InN nano-structures: Effect of Ga incorporation", Journal of Crystal Growth 281 (2005) 328-333.
[74] C.-L. Wu, H.-M. Lee, C.-T. Kuo, S. Gwo and C.-H. Hsu, "Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions", Applied Physics Letters 91 (2007) 042112-3.
[75] H. Sakaki, L. L. Chang, R. Ludeke, C.-A. Chang, G. A. Sai-Halasz and L. Esaki, "In1 - xGaxAs-GaSb1 - yAsy heterojunctions by molecular beam epitaxy", Applied Physics Letters 31 (1977) 211-213.
[76] L. F. Luo, R. Beresford and W. I. Wang, "Interband tunneling in polytype GaSb/AlSb/InAs heterostructures", Applied Physics Letters 55 (1989) 2023-2025.
[77] D. A. Collins, E. T. Yu, Y. Rajakarunanayake, J. R. Soderstrom, D. Z. Y. Ting, D. H. Chow and T. C. McGill, "Experimental observation of negative differential resistance from an InAs/GaSb interface", Applied Physics Letters 57 (1990) 683-685.
[78] M. P. Mikhailova, G. G. Zegrya, K. D. Moiseev and Y. P. Yakovlev, "Interface electroluminescence of confined carriers in type II broken-gap p-GaInAsSb/p-InAs single heterojunction", Solid-State Electronics 40 (1996) 673-677.
[79] V. A. Berezovets, K. D. Moiseev, M. P. Mikhailova, R. V. Parfeniev, Y. P. Yakovlev and V. I. Nizhankovski, "Vertical transport in a GaInAsSb/p-InAs broken-gap type II heterojunction", Low Temperature Physics 33 (2007) 137-146.