研究生: |
陳聿揚 Chen, Yu-Yang |
---|---|
論文名稱: |
Visibility Representation with Congruent Segments on Planar Graphs 平面圖的等線段可視性表示圖之研究 |
指導教授: |
潘雙洪
Poon, Sheung-Hung |
口試委員: |
陳朝欽
Chen, Chaur-Chin 林春成 Lin, Chun-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 圖形繪製 、可視性表示圖 |
外文關鍵詞: | Graph drawing, Visibility representation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,在計算幾何與圖形理論中,圖形繪製是一個經常深受探討的問題。圖形繪製根據不同的表示原則發展出相當多種不同的表示法,舉例來說,有直線繪圖與正交線繪圖等。在此篇論文中,我們專注在其中一種關於平面圖的重要表示法,可視性表示圖。
平面圖的可視性表示圖就是將平面圖上的點以不交錯的水平線段呈現,而當平面圖的某兩點相連時,其相連之邊在可視性表示圖中以垂直線段呈現,並與兩條表示相對應兩點的水平線段相連。針對平面圖的可視性表示圖,我們證明求一個平面圖的最小面積的可視性表示圖是一個NP-complete複雜度的問題。
等線段可視性表示圖是可視性表示圖的一種變形,它符合可視性表示圖的所有特性,且增加一個條件,平面圖的所有點以不交錯的等長水平線段呈現。我們證明判斷一個平面圖是否擁有等線段可視性表示圖是一個NP-complete複雜度的問題。我們也證明了判斷一個平面圖是否擁有指定長度的等線段可視性表示圖是一個NP-complete複雜度的問題。
另一方面,我們設計了兩個求特定圖形上的等線段可視性表示圖之演算法,首先,我們提出一個在O(n)時間內得到關於outerplanar graphs的等線段可視性表示圖之演算法。接著,我們提出一個演算法可在O(n)時間內得到關於bipartite planar graphs的等線段可視性表示圖。
In recent years, graph drawing plays an important role in computational geometry and graph theory. There are many different ways to represent graphs, for example, straight line drawing and orthogonal drawing. In our thesis, we focus on the visibility representation (or VR for short) of planar graphs. Let G be a plane graph with n vertices. In a visibility representation of G, each vertex of G is represented as a horizontal line segment (called vertex segment), and two vertex segments are connected by a vertical line segment (called edge segment) if the corresponding vertices are adjacent in G.
Rosenstiehl and Tarjan conjectured that minimizing the area of visibility representation is NP-hard. In this thesis, we reduce from 3SAT problem and show the area-minimization problem of visibility representation is NP-complete.
A visibility representation with congruent segments (or VRCS for short) is a variant of visibility representation, which is similar to VR, but all vertices of G are represented as equal length horizontal line segments. We show that the VRCS drawing problem for general planar graphs is NP-complete. We also prove the problem of visibility representation with congruent segments of fixed length (or VRCSFL for short) on planar graphs is NP-complete.
Apart from NP-hardness proofs, we provide a VRCS drawing algorithm for outerplane graphs in O(n) time, and an O(n) time VRCS drawing algorithm for bipartite plane graphs, respectively.
[1] A. Lempel, S. Even and I. Cederbaum, An algorithm for planarity testing of graphs, Theory
of Graphs, 1967.
[2] C.C. Lin , H. I. Lu and I.F. Sun, Improved compact visibility representation of planar graph
via Schnyders realizer, SIAM Journal on Discrete Mathematics, 2004, pp. 19-29.
[3] C.Y. Chen, Y.F. Hung and H.I. LU Visibility representations of four-connected plane graphs
with near optimal heights, Computational Geometry, vol. 42(9), 2009, pp. 865-872.
[4] D.R. Woods, Drawing planar graphs, Computer Science, 1981.
[5] G.D.Battista, P.Eades, R.Tamassia, and I.G. Tollis, Algorithms for drawing graphs: an an-
notated bibliography, Computational Geometry: Theory and applications , 4(5), 1994, pp.
235-282.
[6] G. Kant, A more compact visibility representation, International Journal of Computational
Geometry and Applications, 1997, pp. 197-210.
[7] G. Kant and X. He, Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications
in Graph Drawing Problems, Theoretical Computer Science, vol. 172(1-2), 1997, pp. 175-193.
[8] H. Fraysseix, P.O. Mendez and J. Pach, Representation of planar graphs by segments, Intuitive
Geometry, 1991.
[9] H. Zhang and X. He, Compact visibility representation and straight-line grid embedding
of plane graphs, In Proceedings of the 8th International Workshop on Algorithms and Data
Structures, Lecture Notes in Computer Science 2748, 2003, pp. 493-504.
[10] H. Zhang and X. He, Visibility representation of plane graphs via canonical ordering tree,
Information Processing Letters, 2005, pp. 41-48.
[11] H. Zhang and X. He, Improved visibility representation of plane graphs, Computational
Geometry, vol. 30(1), 2005, pp. 29-39.
[12] H. Zhang and X. He Canonical ordering trees and their applications in graph drawing, Discrete
and Computational Geometry, vol. 33(2), 2005, pp. 321-344.
[13] H. Zhang and X. He, An application of well-orderly trees in graph drawing, International
Journal of Foundations of Computer Science, vol. 17, 2006, pp. 1129-1142.
[14] J. Ebert, St-ordering the vertices of biconnected graphs, Computing, vol. 30, 1983. pp.19-33.
[15] J. H. Fan, C. C. Lin, H. I. Lu and H. C. Yen, Width-optimal visibility representations of
plane graphs, Lecture Notes in Computer Science, vol. 4835, 2007, pp. 160-171.
[16] M. de Berg and A. Khosravi, Optimal binary space partitions in the plane, International
Journal of Computational Geometry and Applications, vol. 22(3), 2012, pp. 187-206.
[17] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of np-
completeness, Freeman, Newyork, 1979.
[18] M.Kaufmann and D.Wagner, Drawing graphs: methods and models, Springer, 2001.
[19] M.Patrignani, On the complexity of orthogonal compaction, Computational Geometry, vol.
22(3), 2001, pp. 47-67.
[20] M. Schlag, F.Luccio, P. Maestrini, D.T. Lee and C.K Wong, A visibility problem in VLSI
layout compaction, Advances in Computing Research, 1985, pp. 259-282.
[21] N. de Castro, F. J. Cobos, J. C. Dana, A. Marquez and M. Noy, Triangle-free planar graphs
and segment intersection graphs, Journal of Graph Algorithms and Applications, vol. 6(1),
2002, pp.7-26.
[22] P. Rosenstiehl and R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar
graphs, Discrete and Computational Geometry, 1986, pp. 343-353.
[23] R.H.J.M Otten and J.G. van Wijk, Graph representations in interactive layout design, Pro-
ceedings of the IEEE International Symposium on Circuits and Systems, 1978, pp. 914-918.
[24] R. Tamassia and I.G. Tollis, A unied approach to visibility representations of planar graphs,
Discrete and Computational Geometry, 1986, pp. 321-341.
[25] R. Tamassia and I.G. Tollis Algorithms for visibility representations of planar graphs, STACS,
1986, pp. 130-141.
[26] S. Bhatt and S. Cosmadakis, The complexity of minimizing wire lengths in VLSI layouts,
Information Processing Letters, vol. 25(4), 1987, pp. 263-267.
[27] S. Even and R. E. Tarjan, Computing an st-numbering, Theoretical Computer Science, vol.
4(1), 1977, pp.123.
[28] T.Lengauer, Combinatorial algorithms for integrated circuit layout, Teubner, 1990.
[29] U. Fmeier, M. Kaufmann Nice drawings for planar bipartite graphs, Algorithms and Com-
plexity, vol. 1203, 1997, pp. 122134.
[30] X. He and H. Zhang, Nearly optimal visibility representations of plane triangulations, SIAM
Journal on Discrete Mathematics, 2008.
[31] X. He, J.J.Wang and H. Zhang Compact visibility representation of 4-connected plane graphs,
Theoretical Computer Science, vol. 447, 2012, pp. 62-73.
[32] X. Lin and P. Eades, Area minimization for grid visibility representation of hierarchically
planar graphs, Cocoon, 1999, pp. 92-102.