研究生: |
陳信傑 Chen, Hsin-Chieh |
---|---|
論文名稱: |
以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響 Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
李正中
Lee, Cheng-Chung 陳至信 Chen, Jyh-Shin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 退火 、氮化矽 、機械損耗 、氫含量 、電漿輔助化學氣相沉積法 |
外文關鍵詞: | annealing, mechanical loss, silicon nitride, hydrogen content, pecvd |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉重力波偵測組織(LIGO ,Laser Interferometer of Gravitational wave Observatory)為一重力波觀測組織,其利用大型麥克森干涉儀量測重力波訊號,由於重力波訊號相當微弱,難以偵測,故量測時必須減少額外的雜訊,由雜訊頻譜中可知,在100Hz左右,其雜訊來源主要為coating Brownian noise,此雜訊為薄膜產生且難以直接量測得到,但經由fluctuation dissipation可知該雜訊與薄膜本身之機械損耗成正比關係,因此量測薄膜機械損耗為本實驗室主要的研究之一。
在之前的研究中,本實驗室所開發之高反射鏡SiN0.40H0.79/SiO2堆疊膜之機械損耗已低於目前LIGO正在使用之600℃ annealed 14.5% TiO2 - doped Ta2O5 / SiO2堆疊膜。為克服鍍膜時,因應力使得基板彎曲導致量測到之機械損耗不準確性,必須利用雙面鍍膜方式平衡應力,由於傳統矽懸臂基板有一粗糙面使得兩薄膜鍍膜情形不同,容易造成誤判,故使用SOI wafer製作量測用基板,其受的box layer之保護,故製作完成時並無粗糙面。此外從文獻探討中得知薄膜之機械損耗可能與薄膜內之氫含量有關,故本文針對本實驗室所鍍製之五種氮化矽薄膜材料(SiN0.40H0.79、SiN0.49H0.68、SiN0.65H0.60、SiN0.79H0.62、SiN0.87H0.93)利用傅立葉轉換紅外光譜儀(FTIR, Fourier Transform Infrared Spectroscopy)之量測結果進行氫含量計算,在氫含量計算結果中,Si-H鍵會隨著SiH4/NH3之氣體通量比增加而上升,N-H鍵因此下降,將氫含量與機械損耗進行交叉比對後,得Si-H鍵與室溫機械損耗有一正相關性。本研究中利用退火方式,觀察本實驗室所製作之材料(SiN0.40H0.79)是否可以因此有效降低機械損耗,退火條件為大氣環境、450℃、30分鐘,但SiN0.40H0.79薄膜易受熱處理而產生表面損傷,因此利用SiO2薄膜將SiN0.40H0.79薄膜包覆其中形成三層結構進行退火,不但使得表面損傷消失,而且此結構因退火處理使得退火前後機械損耗從1.23×〖10〗^(-4) 降至4.13×〖10〗^(-5)。
Large Michelson interferometer set up by Laser Interferometer of Gravitational Wave Observatory (LIGO) is conducted to detect gravitational wave. Owing that the signal of gravitational wave is extremely weak, it’s necessary to reduce the noise caused by the interferometer to approach accurate result. According to the noise spectrum, the sensitivity of interferometer is mostly limited by coating Brownian noise and Quantum noise at approximately 100Hz. The coating Brownian noise, which is proportional to mechanical loss stated by fluctuation-dissipation theorem, comes from high reflective coating on the mirror while Quantum noise is laser related. In research of reducing noise, deducting the mechanical loss of optical thin films becomes critical topic as well. Based on our recent study, the mechanical loss of SiN0.40/SiO2 stacks is lower than “600℃ annealed 14.5% TiO2 - doped Ta2O5 / SiO2 stacks” which is the material used in current gravitational wave detectors.
In order to eliminate the stress effect on silicon cantilever, a double-side coating process is designed. Due to the wet-etching process, conventional silicon cantilever is one-side roughened. Thus, the thin films are coated under the different surface condition with conventional silicon cantilever which the roughened side contributed extra mechanical loss. Our team fabricated a double-side smooth silicon cantilever from Silicon-on-Insulator (SOI), hence the thin films could be coated under both smooth surface condition.
Discovered in our study, applying different gas flow rate ratio leads to unique IR absorption spectra of silicon nitride films by using Fourier Transform Infrared Spectroscopy (FTIR). From literatures, the peak at 2150 cm-1 wavenumber is given by Si-H bonds when the other one is at 3350 cm-1 wavenumber given by N-H bonds. These two peaks are observed in our IR spectra and we can evaluate the bond density of each bond by related equation. As SiH4 /NH3 gas flow rate ratio increasing, the Si-H bond density increases while the N-H bond density decreases.
The SiN0.40H0.79 film is annealed in air for 30 min at 450℃. As a result of thermal anneal would induce damages, we investigate a three-layer structure which the SiN0.40H0.79 film is sandwiched between SiO2 films to improve the surface without appearance of damages and the mechanical loss of three-layer structure is reduced from 1.23×〖10〗^(-4) to 4.13×〖10〗^(-5).
[1] A. Einstein, Die grundlage der allgemeinen relativit¨atstheorie, Annalen der Physik 49 (1916) 769
[2] R. A. Hulse et al., Discovery of a pulsar in a binary system, The Astrophysical journal 195 (1975) L51
[3] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016.
[4] LIGO Scientific Collaboration Group. Instrument science white paper. LIGO- T1100309-v5: 7, Oct. 2011,
[5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40,1951,
[6] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., Sep. 1951, 83: 1231-1235
[7] H. B. Callen, R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev. 86,702-710, 1952
[8] Jessica Steinlechner, Iain W. Martin, Jim Hough, et al. Thermal noise reduction and absorption optimization via multimaterial coatings. Phys. Rev. D 91, 0420012,2015
[9] Steven D Penn, et al. Mechanical loss in tantala/silica dielectric mirror coatings, Classical and Quantum Gravity, 20, 13,2003
[10] Gregory M Harry, et al. Titania-doped tantala/silica coatings for gravitational-wave detection.Classical and Quantum Gravity,24,405-415,2007
[11] D R M Crooks, G Cagnoli, M M Fejer, et al. Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3. Class. Quantum Grav. 23,4953-4965,2006
[12] M. Y. Wu. Room temperature mechanical loss of SiN0.4/SiO2 Quarter-wave stacks deposited by Plasma Enhanced Chemical Vapor Deposition Method. Master thesis, National Tsing Hua University, Taiwan, Jen. 2017
[13] ] Gregory M Harry, Matthew R Abernathy, Andres E Becerra-Toledo, et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Class. Quant. Grav. 24,405-416 gr-qc/0610004, 2007
[14] Murray, P, et al. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems. Physical Review D, 92, 062001,2015
[15] I W Martin, et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Class. Quantum Grav. 27,225020,2010
[16] W. Y. Wang. Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University, Taiwan, Aug. 2013
[17] C. W. Lee. Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application. Master thesis, National Tsing Hua University, Taiwan, Aug. 2013
[18] S. Y. Huang. Stress and mechanical loss study for the double-side coated SiNx films on silicon cantilever. Master thesis, National Tsing Hua University, Taiwan, Oct. 2015
[19] R. G. Christian, The theory of oscillating-vane vacuum gauges, Vacuum 16 (1966) 175
[20] A. W. Heptonstall, Characterization of mechanical loss in fused silica ribbons for use in gravitational wave detector, University of Glasgow, Ph. D. thesis(2004)
[21] A. S. Nowick et al., Anelastic relaxation in crystalline solid, New York: 101 Academic Press (1972)
[22]Matthew A. Hopcroft et al., What is the Young’s modulus of silicon?, Journal of Microelectromechanical system 19 (2010) 229
[23]S. Reid et al., Mechanical dissipation in silicon flexures, Physics Letters A 351 (2006) 205
[24] Y. H. Juang. Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement. Master thesis, National Tsing Hua University, Aug. 2014
[25] Pai. P, et al. Infrared Spectroscopic Study of SiOx Films Produced by Plasma Enhanced Chemical Vapour Deposition. J. Vac. Sci. Technol., A 1986, 4, 689−694.
[26] He. L, et al. Vibrational Properties of SiO and SiH in Amorphous SiOx:H Films (0 < x < 2.0) Prepared by Plasma-Enhanced Chemical Vapor Deposition. J. NonCryst. Solids 1995, 185, 249−261.
[27] Taft, E. A. Characterisation of Silicon Nitride Films. J. Electrochem. Soc. 1971, 118, 1341−1346.
[28] Hasegawa. S ,et al. Connection between Si− N and Si−H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B 1989, 59, 365−375
[29] Sonya Calnan ,et al. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass. ACS Appl. Mater. Interfaces 7,19282,2015
[30] Brodsky M H,et al. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Physical Review B 16,3556-71,1977
[31] Shanks H,et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon. Phys. Status Solidi 100,43,1980
[32] Fang C J , et al. The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques. Journal of Non-Crystalllne Solids 35 & 36 255-60,1980
[33] Morimoto A, et al. Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods .Japanese Journal of Appiled Physics 24, 1394-8,1985
[34] L Wang, et al. Characterization of nitrogen-rich silicon nitride films grown by the electron cyclotron resonance plasma technique. Semicond. Sci. Techn. 18 , 633-641,2003
[35].Morimoto A, Tsujimura Y, Kumeda M, and Shimizu T 1985 Japanese Journal of Appiled Physics 24, 1394-8
[36].Makino T and Maeda M 1986 Japanese Journal of Appiled Physics 25 1300-6
[37].Makino T 1983 Journal of the Electrochemistry Society 130 450-5
[38] H. Shanks, et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon.Phys. Stauts Solidi B 100, 43, 1980
[39] Yinong Liu, et al. Thermally induced damages of PECVD SiNx thin films. Materials Research Society, 26, 2552–2557, 2011.
[40] Mishima Y, et al. Investigation of the bubble formation mechanism in a-Si:H films by Fourier-transform infrared mirospectroscopy. J. Appl. Phys, 64, 8, 1988.
[41] Miklós Serényi, et al. On the formation of blisters in annealed hydrogenated a-Si layers. Nanoscale Research Letters20138:84
[42] Masahiko Maeda, et al. Thermal dissociation process of hydrogen atoms in plasma-enhanced chemical vapor deposited silicon nitride films. Journal of Applied Physics 84, 5243 (1998)
[43] Le-Nian He, et al. Properties of "Stoichiometric" Silicon Oxynitride Films. Jpn. J. Appl. Phys. 35 1503(1996)
[44]S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 2003, 5: 109-121, ISBN: 978-0-534-40896-1
[45] B. S. Berry, W. C. Pritchet. Vibrating reed internal friction apparatus for films and foils. IBM journal of research and development, 1975, 19: 334
[46] D. R. M. Crooks. Mechanical loss and its significance in test mass mirrors of gravitational wave detectors. Ph.D. thesis, University of Glasgow, 2002, 121-123
[47] X. Liu, R. O. Pohl. Low-energy excitations in amorphous films of silicon and germanium. Phys. Rev. B, Oct. 1998, 58: 9067-9081
[48] B. E. W. Jr., R. O. Pohl. Thin films: stresses and mechanical properties V: Elastic properties of thin films. Mater. Res. Soc., Pittsburgh, Jun. 1995, No.356: 567-572, ISBN: 978-1-558-99257-3
[49] Z. Z. Xie. Study of the optical-mechanical properties of amorphous silicon and silicon dioxide fabricated by Plasma Enhance Chemical Vapor Deposition (PECVD). Master thesis, National Tsing Hua University, Apr. 2015
[50]M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
[51] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857
[52] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627
[53] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6
[54] C. L. Dai. A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films. Materials Letters, Jun. 2007, 61: 3089-3092
[55] 歐政勳, 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂樑及單晶矽懸臂之初部量測分析, 國立清華大學碩士論文,台灣 (2012)
[56]Xiao Liu, et al. Internal friction of amorphous and nanocrystalline silicon at low temperature. Materials Science and Engineering A,442,307-313,2006