簡易檢索 / 詳目顯示

研究生: 余佳銘
Chia-Ming Yu
論文名稱: 不同加鋅處理條件之敏化304不□鋼在模擬沸水式反應器環境中的電化學特性研究
Electrochemical Behavior of Type 304 Stainless Steels Treated with ZnO in Simulated Boiling Water Reactor Environments
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 143
中文關鍵詞: 沸水式反應器沿晶應力腐蝕裂縫加氫水化學技術氧化鋅添加技術電化學腐蝕動態電位極化掃描
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    核能電廠中隸屬壓力邊界(Pressure Boundary)的結構組件依據其設計基準應具備四十年的使用年限,但自1960年代初期起,沸水式反應器(Boiling Water Reactor, BWR)壓力槽外的再循環管路便開始出現應力腐蝕龜裂(Stress Corrosion Cracking, SCC)的問題。而1974年起,全世界有相當多數的沸水式反應器壓力槽內部組件也陸續的發現有類似的應力腐蝕龜裂問題,這些龜裂類型主要可區分為沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)與輻射促進應力腐蝕龜裂(Irradiation-assisted Stress Corrosion Cracking, IASCC)。然而近二十年來,為減緩沸水式反應器不□鋼組件的龜裂劣化問題,已有許多方式被提出討論。
    加氫水化學 (Hydrogen Water Chemistry, HWC) 技術是在飼水中注氫來降低基材金屬的電化學腐蝕電位 (Electrochemical Corrosion Potential, ECP),已證實能有效防制IGSCC與IASCC的發生。然而,HWC技術在高注氫量下,會帶來升高管路輻射劑量的副作用,於是增益或取代HWC的被覆技術接著發展出來,其中以催化性被覆及抑制性被覆最為普遍。前者是利用貴重金屬催化氫的氧化反應,以促進HWC的效益;抑制性被覆則是在組件表面形成一阻絕被覆,以降低金屬表面氧化還原反應的速率,進而降低不□鋼組件的腐蝕速率。
    另外,在取代HWC的技術尚未成熟之前,全球的核電廠為了解決HWC技術造成的輻射劑量大增問題,近年來在核能業界已逐漸的發展出接近成熟的加鋅處理技術來改善輻射劑量大增的問題,並廣泛的應用在核電廠之中。在此期間,許多核能界的學者更加認為加鋅處理技術除了可以降低輻射劑量外,應該還有抑制SCC的效用存在,然而尚無足夠的數據去明確地證實此項效應的存在。
    所以本篇論文的目的,將模擬BWR爐心中溶氧與溶氫的高溫純水環境,利用高溫電化學分析以及表面分析去比較304不□鋼在經由不同條件的加鋅處理過後的防蝕效益。
    由本實驗結果顯示,在低濃度加鋅處理下,幾乎不會有Zn離子交換的現象發生,必須要在高濃度加鋅處理下(1 ppm ZnO),才會有明顯的Zn離子置換發生。然而在高溫電化學分析方面,則發現無論在高濃度或低濃度加鋅處理下,均無防蝕效益存在。


    目 錄 頁次 摘要.....................................................Ⅰ 謝辭.....................................................Ⅲ 目錄.....................................................Ⅳ 圖目錄...................................................Ⅷ 表目錄..................................................XⅥ 第一章 前言..............................................1 第二章 理論基礎..........................................5 2.1 應力腐蝕破裂.........................................5 2.1.1 應力腐蝕破裂定義...................................5 2.1.2 應力腐蝕破裂的型態................................6 2.1.3 應力腐蝕破裂的理論機制............................7 2.1.4 應力腐蝕破裂形成的三大因素........................9 2.1.5 防治方法.........................................11 2.2 電化學混合電位理論..................................13 2.3 O2、H2之理論氧化還原平衡電位.......................18 2.4 BWR的各項防蝕技術之理論基礎.......................20 2.4.1 加氫水化學(Hydrogen Water Chemistry, HWC).........20 2.4.2貴重金屬被覆(Noble Metal Chemical Addition, NMCA)...23 2.4.3 抑制性被覆(Inhibitive Protective coating,IPC)..........25 2.4.4 加鋅水化學.......................................26 2.4.5 伊凡斯圖(Evan’s diagram)的解釋.....................27 第三章 文獻回顧..........................................34 3.1 不□鋼組件氧化膜的特性..............................34 3.1.1 高溫之氧化膜結構型態.............................35 3.1.2 高溫氧化膜之成長機制.............................41 3.2 加鋅水化學..........................................44 3.2.1 初期發展.........................................44 3.2.2 氧化膜結構型態...................................46 3.2.3 抑制應力腐蝕裂縫(SCC)成長之相關研究..............51 第四章 實驗設備及步驟....................................61 4.1 實驗設計及方法......................................61 4.2 試片準備............................................63 4.3 試片熱處理及清潔....................................63 4.4 試片敏化測試........................................63 4.5 試片預長氧化膜......................................65 4.6 加鋅水化學處理......................................65 4.7 實驗設備............................................65 4.7.1 高溫高壓水循環系統...............................65 4.7.2 參考電極製備.....................................68 4.8 試片材料特性分析與電化學分析........................68 4.8.1 SEM表面顯微結構與EDX成份分析.................68 4.8.2 X-ray繞射分析 (X-ray Diffraction Spectroscopy,XRD)....68 4.8.3拉曼光譜儀(Raman Spectroscopy) ....................69 4.8.4歐傑電子能譜分析(Auger Electron Spectrometer, AES)....70 4.8.5 X光光電子能譜儀(X-ray Photoelectron Spectrometer).....70 4.8.6 感應式偶合電漿分析(ICP-MS) ......................71 4.8.7 動態電位極化掃描.................................71 第五章 結果與討論.........................................73 5.1 試片實驗條件........................................73 5.2 迴路出口端鋅離子濃度測量............................74 5.3 敏化測試............................................74 5.4 預長氧化膜結果分析..................................76 5.4.1掃瞄式電子顯微鏡 (SEM) ..........................76 5.4.2 X-ray繞射分析....................................79 5.4.3 拉曼散射光譜分析.................................81 5.4.4 歐傑電子能譜分析.................................83 5.4.5 X光光電子能譜儀..................................85 5.5 加鋅處理試片之結果分析..............................87 5.5.1掃瞄式電子顯微鏡 (SEM) ..........................87 5.5.2 感應耦合電漿質譜分析 (ICP-MS) ..................94 5.5.3 拉曼散射光譜分析.................................95 5.5.4 歐傑電子能譜分析.................................97 5.5.5 X光光電子能譜儀................................100 5.6 高溫動態電位極化掃描分析...........................105 5.6.1 不同溶氧濃度下之極化曲線........................106 5.6.2 除氧及溶氫濃度下之極化曲線......................119 5.7 實驗總結...........................................132 第六章 結論.............................................135 參考文獻.................................................138 圖目錄 圖2-1 造成SCC的三大因素..................................6 圖2-2 膜破裂/滑移氧化模式之示意圖..........................9 圖2-3 Cr23C6的析出及鉻乏區的形成造成材料敏化..............11 圖2-4 鋅在鹽酸中的極化曲線關係圖..........................15 圖2-5 氫之理論氧化還原平衡電位圖..........................19 圖2-6 氧之理論氧化還原平衡電位圖..........................20 圖2-7 裂縫成長速率與ECP之間關係圖.......................21 圖2-8 HWC造成氧化層結構改變以致於60Co溶入爐水之示意圖.23 圖2-9 實施HWC後使主要蒸汽管路輻射劑量率升高............23 圖2-10 氫/氧莫爾比對ECP的影響...........................24 圖2-11 實施加氫水化學(HWC)下,ECP及金屬腐蝕電流密度之變化 ..................................................31 圖2-12 實施貴重金屬被覆下,ECP及金屬腐蝕電流密度之變化..31 圖2-13 實施抑制性被覆下,大幅抑制氧氧的還原反應,使得ECP和 ECD明顯降低......................................32 圖2-14 實施抑制性被覆下,大幅抑制金屬的氧化反應,使得ECP上 升而ECD明顯降低..................................32 圖2-15 溶氫環境下實施抑制性被覆後ECD明顯降低............33 圖3-1 高溫純水環境下預長氧化膜表面組態(a) 200 ppb溶氧 (b) 200 ppb過氧化氫 (c) 150 ppb溶氫.........................36 圖3-2 雷射拉曼光譜圖......................................39 圖3-3 SIMS量測到之氧/鐵以及鉻/鐵的縱深分布..............39 圖3-4 氧化膜的外層顆粒直徑、厚度以及外層的α-Fe2O3的比例..40 圖3-5 由STEM觀察到的氧化膜橫截面.......................40 圖3-6 由STEM-EDS得到的橫截面元素成分分布(mappings) .....40 圖3-7 不□鋼在高溫純水環境下生成氧化膜的示意圖............42 圖3-8 歐傑電子能譜儀分析氧化膜的結果......................43 圖3-9 不□鋼在高溫之雙層氧化膜模式........................44 圖3-10 AES分析添加10 ppb Zn經過三百小時後之試片的結果...45 圖3-11 合金600在加鋅前後氧化膜的改變及PWSCC的抑制機制 ...................................................48 圖3-12 300oC下,不□鋼或鎳基合金在加鋅後之Pourbaix diagram ...................................................50 圖3-13 裸露的不□鋼在加鋅處理後的SEM與EDX分析結果(左為 添加12ppb鋅,右為添加47ppb鋅) ...................53 圖3-14 GDS元素縱深分布(左圖為無添加鋅,中圖為添加12ppb鋅, 右圖為添加47ppb鋅) ...............................53 圖3-15 XPS元素縱深分布(左為在HWC環境下,中為在NWC環境, 右為物理氣相蒸鍍α-Fe2O3) ..........................53 圖3-16 試片在常溫NaSO4溶液中的陽極極化掃描曲線(1)bare試片 (a)bare試片經12 ppb加鋅 (b)bare試片經47 ppb加鋅 (c) prefilm試片經12 ppb加鋅 (d)prefilm試片經47 ppb加鋅 ...................................................54 圖3-17 合金600之固定拉伸速率測試曲線(a) strain rate =2.5Ⅹ10-7/sec (b) strain rate = 5Ⅹ10-7/sec (c)拉伸結果參數表...........55 圖3-18 合金600破裂面以及斷裂面中PWSCC的區域比例分析 (a) strain rate = 2.5Ⅹ10-7/sec (b) strain rate = 5Ⅹ10-7/sec.....56 圖3-19 氧化膜破裂應變試驗 (a) Oxide Rupture Strain V.S. Zn concentration (b) Oxide Rupture Strain V.S.Exposure time ...................................................58 圖3-20 再鈍化動力學測試(Current Density V.S. Time Pulse) (a)in deaerated 0.2M H3BO3 (b)in deaerated 0.01M Na2MoO4 ..................................................58 圖3-21 裂縫成長速率實驗曲線(crack length V.S. test time) ........59 圖3-22 裂縫成長速率實驗曲線(crack length V.S. test time) .......59 圖4-1 實驗流程圖..........................................62 圖4-2 模擬BWR之高溫高壓水循環系統示意圖.................67 圖4-3 加鋅水化學處理之動態水循環系統示意圖................67 圖4-4 高溫動態電位極化掃描之試片擺放示意圖................72 圖5-1 304不□鋼試片敏化測試之結果........................75 圖5-2 300 ppb [O2]dis下預長化膜試片表面顯微結構 : (a) 20KX (b)10KX (c) 5KX (d) 1KX (e) 5KX 之EDX成份分析......77 圖5-3 50 ppb [H2]dis下預長化膜試片表面顯微結構 : (a) 10KX (b)1KX (c) 5KX (d) 5X之表面Cr成份分佈 (e) 5KX中較大顆粒之EDX成份分析 (f) 5KX中較小顆粒之EDX成份分析.....78 圖5-4 預長氧化膜試片之XRD繞射圖........................80 圖5-5 預長氧化膜試片表面結構的拉曼散射光譜分析............82 圖5-6 預長氧化膜試片AES縱深分析(a)A試片(300 ppb [O2]dis prefilm) (b)B試片(50 ppb [H2]dis prefilm) ...................... 84 圖5-7 預長氧化膜試片表面XPS分析(a)A試片(300 ppb [O2]dis prefilm) (b) B試片(50 ppb [H2]dis prefilm) .......................87 圖5-8 10 ppb ZnO (C試片) 的表面顯微結構 : (a) 20KX (b) 10KX (c) 5KX (d) 1KX (e) 5KX 之EDX成份分析.................89 圖5-9 100 ppb ZnO (D試片) 的表面顯微結構 : (a) 20KX (b) 10KX (c) 5KX (d) 1KX (e) 5KX中暗色區域EDX成份分析 (f) 5KX中淺色區域EDX成份分析............................90 圖5-10 100 ppb ZnO (HWC) (E試片) 的表面顯微結構 : (a) 20KX (b) 10KX (c) 5KX (d) 1KX (e) 5KX中較大顆粒之EDX成份分析 (f) 5KX中較小顆粒之EDX成份分析...................91 圖5-11 100 ppb ZnO (bare) (F試片) 的表面顯微結構 : (a) 20KX (b) 10KX (c) 5KX (d) 1KX (e) 5KX中較大顆粒之EDX成份分析 (f) 5KX中較小顆粒之EDX成份分析....................92 圖5-12 1 ppm ZnO (G試片) 的表面顯微結構: (a) 20KX (b) 10KX (c) 5KX (d) 1KX (e) 5KX中暗色區域之EDX成份分析 (f) 5KX中淺色區域之EDX成份分析.....................93 圖5-13 試片表面結構的拉曼散射光譜分析 (a)文獻中所歸納出的不同氧化物之拉曼散射光譜 (b)加鋅水化學處理試片之拉曼光譜分析...........................................97 圖5-14 加鋅處理試片的AES縱深分析結果 (a) 100 ppb ZnO (D試片) (b) 100 ppb ZnO (HWC) (E試片) (c) 100 ppb ZnO (bare) (F試片) ..........................................100 圖5-15 加鋅處理試片之XPS全譜掃描結果....................102 圖5-16 加鋅處理試片對Zn(2p3/2)作XPS細部掃描結果 (a) 10 ppb ZnO (C試片) (b) 100 ppb ZnO (D試片) (c) 100 ppb ZnO (HWC) (E試片) (d) 100 ppb ZnO (bare) (F試片) (e) 1ppm (G試片) ............................................103 圖5-17 G試片的XPS縱深分析結果.........................104 圖5-18 A試片與C試片各在高溫不同溶氧純水環境下極化曲線比較 (a)Prefilm (A試片) (b) 10 ppb ZnO (C試片) ...........109 圖5-19 A試片與C試片在高溫相同溶氧純水環境下極化曲線比較 (a)300 ppb O2 (b)150ppb O2 (c)50ppb O2.................110 圖5-20 A試片與D試片各在高溫不同溶氧純水環境下極化曲線比較 (a)Prefilm (A試片) (b) 100 ppb ZnO (D試片) ..........111 圖5-21 A試片與D試片在高溫相同溶氧純水環境下極化曲線比較 (a)300 ppb O2 (b)150ppb O2 (c)50ppb O2.................112 圖5-22 A試片與E試片各在高溫不同溶氧純水環境下極化曲線比較 (a)Prefilm (A試片) (b) 100 ppb ZnO (HWC) (E試片) ...113 圖5-23 A試片與E試片在高溫相同溶氧純水環境下極化曲線比較 (a)300 ppb O2 (b)150ppb O2 (c)50ppb O2.................114 圖5-24 A試片與F試片各在高溫不同溶氧純水環境下極化曲線比較 (a) Prefilm (A試片) (b) 100 ppb ZnO (bare) (F試片) .....115 圖5-25 A試片與F試片在高溫相同溶氧純水環境下極化曲線比較 (a)300 ppb O2 (b)150ppb O2 (c)50ppb O2.................116 圖5-26 A試片與G試片各在高溫不同溶氧純水環境下極化曲線比較 (a) Prefilm (A試片) (b) 1 ppm ZnO (G試片) ..........117 圖5-27 A試片與G試片在高溫相同溶氧純水環境下極化曲線比較 (a)300 ppb O2 (b)150ppb O2 (c)50ppb O2.................118 圖5-28 A試片與C試片各在高溫除氧及溶氫環境下極化曲線比較 (a) Prefilm (A試片) (b) 10 ppb ZnO (C試片) ..........122 圖5-29 A試片與C試片在高溫除氧以及溶氫環境下極化曲線比較 (a) <0 ppb O2 (b) 300 ppb H2.........................123 圖5-30 A試片與D試片各在高溫除氧及溶氫環境下極化曲線比較 (a) Prefilm (A試片) (b) 100 ppb ZnO (D試片) .........124 圖5-31 A試片與D試片在高溫除氧以及溶氫環境下極化曲線比較 (a) <0 ppb O2 (b) 300 ppb H2.........................125 圖5-32 A試片與E試片各在高溫除氧及溶氫環境下極化曲線比較 (a) Prefilm (A試片) (b) 100 ppb ZnO (HWC) (E試片) ..126 圖5-33 A試片與E試片在高溫除氧以及溶氫環境下極化曲線比較 (a) <0 ppb O2 (b) 300 ppb H2.........................127 圖5-34 A試片與F試片各在高溫除氧及溶氫環境下極化曲線比較 (a) Prefilm (A試片) (b) 100 ppb ZnO (bare) (F試片) ....128 圖5-35 A試片與F試片在高溫除氧以及溶氫環境下極化曲線比較 (a) <0 ppb O2 (b) 300 ppb H2.........................129 圖5-36 A試片與G試片各在高溫除氧及溶氫環境下極化曲線比較 (a) Prefilm (A試片) (b) 1 ppm ZnO (G試片) ...........130 圖5-37 A試片與G試片在高溫除氧以及溶氫環境下極化曲線比較 (a) <0 ppb O2 (b) 300 ppb H2.........................131 表目錄 表3-1 在200 ppb O2、200 ppb H2O2、150 ppb H2的水化學環境下所形成氧化膜的組成與結構.............................36 表3-2 各種不□鋼雜質的氧化物四面體結構及其生成自由能......46 表3-3 加鋅前後氧化膜結構之變化............................51 表3-4 加鋅前後電化學性質的變化............................60 表4-1 304不□鋼成分......................................63 表4-2 敏化程度與顯微結構的變化............................64 表5-1 試片實驗條件........................................73 表5-2 ICP-MS測得之出口端水質之鋅離子濃度之結果..........74 表5-3 預長氧化膜試片表面成分百分比........................86 表5-4 ICP-MS分析氧化膜Zn元素的數量.....................95 表5-5 A試片與C試片在溶氧高溫水環境下的電化學參數......110 表5-6 A試片與D試片在溶氧高溫水環境下的電化學參數......112 表5-7 A試片與E試片在溶氧高溫水環境下的電化學參數......114 表5-8 A試片與F試片在溶氧高溫水環境下的電化學參數.......116 表5-9 A試片與G試片在溶氧高溫水環境下的電化學參數......118 表5-10 A試片與C試片在溶氫高溫水環境下的電化學參數.....123 表5-11 A試片與D試片在溶氫高溫水環境下的電化學參數.....125 表5-12 A試片與E試片在溶氫高溫水環境下的電化學參數.....127 表5-13 A試片與F試片在溶氫高溫水環境下的電化學參數.....129 表5-14 A試片與G試片在溶氫高溫水環境下的電化學參數.....131 表5-15 實驗中,預長氧化膜試片的表面氧化物特性............132 表5-16 實驗中,加鋅前後的表面氧化物特性與電化學性質的差異 .................................................132 表5-17 比較本實驗與文獻中,在加鋅前後氧化膜型態及結構之差異 .................................................133 表5-18 比較本實驗與文獻中,在加鋅前後電化學性質之差異...134

    參考文獻
    1. 邱太銘, “再生能源,”國立清華大學工科系授課講義
    2. 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
    3. M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion . Vol.55 No.11 pp.1101-1109.
    4. S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
    5. D. A. Jones, “Principles and Prevention of Corrosion 2nded, ” Prentice Hall, Upper Saddle River, NJ(1996).
    6. P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data” ,CORROSION/99, paper no. 145, Houston, TX, NACE International, (1999).
    7. 鮮棋振,“金屬腐蝕膜特性探討,”徐氏基金會出版
    8. H. H. Uhlig, R. W. Revie, “Corrosion and Corrosion Control, 3rded. ”
    9. T. M. Angeliu, P. L. Andresen, F. P. Ford,“Applying slip-oxidationtothe SCC of austenitic materials in BWR/PWR environments. ” CORROSION 98, NACE International, 1998, Paper No. 262.
    10. Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999.
    11. Y. Ueda, K. Nakacho, T. Shimizu, “Improvement of Residual Stresses of Circumferential Joint of Pipe by Heat-Sink Welding,” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 108, no. 1, pp. 14-23. Nov. 1986.
    12. N. R. Hughes, T. P. Diaz, V. V. Pestanas, “Qualification of Induction Heating Stress Improvement for Mitigation of Stress Corrosion Cracking, ” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 104, no. 4, pp. 344-350. Nov. 1982.
    13. M. G. Fontana, “Corrosion Engineering, 3rd ed.,” McGraw-Hill International.
    14. D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors,” Corrosion, Vol.48, No.3, p.194(1992).
    15. J. B. Lee, “Electrochemical Approach to the Corrosion Problems of Several Iron-Nickel-Chromium Alloys in High Temperature High Pressure Water,” Ph.D. Thesis, Department of Metallurgical Engineering, The Ohio State University, U.S.A., 1978.
    16. Electric Power Research Institute, “BWR Water Chemistry Guideline, 1996 Revision,” EPRI TR-103315-R1, 1996.
    17. P. L. Andresen, F. P. Ford, “ Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron Alloys in Aqueous Systems,” Materials Science and Engineering, A103, p.167, (1988).
    18. B. Stellwag, M. Lasch, and U. Staudt, 1998 JAIF Conference p186-193
    19. R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7, BNES, Bournemouth, England, Oct. 13-17, 1996, p. 196.
    20. Y. J. Kim and P. L. Andresen, “Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water,” CORROSION–MAY 1999, Vol. 55, No. 5, p.456-461.
    21. S. Hettiarachchi, R. J. Law, T. P. DiaZ, R. L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997).
    22. C. S. Kumai, and T. M. Devine, “Oxidation of Iron in 2880C, Oxygen-Containing Water,” Corrosion. Vol. 61, No. 3.
    23. B. Stellwag, “The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water,” Corrosion Science, Vol. 40, No. 2, p. 337 (1998).
    24. Y. Asakura et al, Corrosion NACE, 1989, 45, 119-124.
    25. R. Winkler, H. Lehmann, VGB Kraftwerkstechnik, 1985, 65,421426.
    26. Y. J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
    27. Y. J. Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water,” International Water Chemistry Conference, San Francisco, October 2004.
    28. Y. J. Kim, “Characterization of the Oxide Film Formed on Type 316 Stainless Steel in 288°C Water in Cyclic Normal and Hydrogen Water Chemistries,”Corrosion Vol.51, No.11, pp.849-860(1995).
    29. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of SS in High Temperature Water,” Water Chemistry of Nuclear Reactor Systems, Oct. (2004).
    30. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
    31. S. Uchida et al., ‘‘Dissolution of oxide.lm onstainless steel surface in high temperature H2O2water,’’ Proc. Symp. Water Chemistry and Corrosion of Nuclear Power Plants in Asia, 2005, Gyeonhju, Korea, Oct. 11–13, 2005, Korean Atomic Energy Research Institute, 145 (2005).
    32. Y. J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water ,” Corrosion Vol. 56, No.4, April 2000.
    33. C. S. Kumai, T. M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water,” Corrosion Vol. 61, No. 3, pp.201-218, (2005).
    34. W. J. Marble, R. L. Cowan, C. J. Wood, “Control of Cobalt-60 Deposition,” Water Chemistry of Nuclear Reactor System 4, BNES, October, 1986.
    35. T. Baba et al., Proceedings JAIF Int`I Conf. on Water Chemistry in
    Nuclear Power Plants, (1998).
    36. W. J. Marble, “New Developments in BWR Radiation Buildup,”
    EPRI Seminar on BWR Radiation Buildup, Electric Power Research Institute, Palo Alto, California, December 1983.
    37. L. W. Niedrach,W. H. Stoddard, “Effect of Zinc on Corrosion that Form on Stainless Steel,”Corrosion,Vol.42, No.9, pp.546-549, (1986).
    38. R. L. Cowan et al, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
    39. H. Kawamura, H. Hirano et al. ,“Inhibitory Effect of Zinc Addition to High-Temperature Hydrogenated Water on Mill-Annealed and Prefilmed Alloy 600,” Corrosion-Vol.56, No.6,pp.623-636, (2000).
    40. S. E. Ziemniak, M. Hanson ,“Zinc Treatment Effects on Corrosion
    Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water,” Corrosion Science 48(2006)2525-2546.
    41. S. E. Ziemniak, M. Hanson ,“Zinc Treatment Effects on Corrosion
    Behavior of Alloy 600 in High Temperature, Hydrogenated Water,” Corrosion Science 48(2006) 3330–3348
    42. B. Beverskog, “The Role of Zinc in LWRs,” Water Chemistry of Nuclear Reactor Systems, Oct. (2004).
    43. 梁仲賢,第四屆海峽兩岸材料腐蝕與防護研討會,“BWR環境下鋅、鈷離子對304不□鋼表面氧化膜之影響研究”,2004年10月
    44. K. Ishigure, T. Kimura, E. Kadoi, “Effect of Pre-conditioning with Zinc on the Surface Oxide Layer and Anodic Polarization Begavior of Stainless Steel,” Symposium on water chemistry and corrosion on nuclear power plant in Asia 2005.
    45. W. Y. Maeng, Y. S. Cho, “Effect of Dissolved Zn on the PWSCC of Alloy 600 in High Temperature Water,” Symposium on water chemistry and corrosion on nuclear power plant in Asia 2005
    46. T. M. Angeliu, P. L. Andresen, “Effect of Zinc Additions on
    Rupture Strain and Repassivation Kinetics of Iron-Based Alloys in 288℃ Water,” Corrosion ,Vol.52, No.1 ,pp.28-35, (1996) .
    47. P. L. Andresen, J. A. Wilson, K. S. Ahluwalia , “Use of Primary
    Water Chemistry in PWRs to Mitigate PWSCC of Ni-Base Alloys,”
    International Conference on Water Chemistry of Nuclear Reactor Systems 2006.
    48. M. M. Morra, P. L. Andresen, M. Pollick, “The Effect of Zn and
    Low Energy Grain Boundaries on SCC of Stainless Steels,” ICG-EAC 2004 Yumebutai, Japan, April 20, 2004.
    49. R. L. Cowan, E. Kiss, “Optimizing BWR Water Chemistry,” Procding of 6th International Symposium on Environmental Degradation of Material in Nuclear Power System, San Diego, California, August 1993..
    50. H. Hosokawa, M. Nagase, “Investigation of Cobalt Deposition Behavior with Zinc Injection on Stainless Steel under BWR Conditions,” Journal of Nuclear Science and Technology, Vol.41, No.6, p.682-689(2004).
    51. R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles ”third edition .
    52. 汪建民,“材料分析,”中國材料科學學會
    53. M. Chen , Z. L. Pei et al. , “Surface characterization of transparent conductive oxide Al-doped ZnO films ,” Journal of Crystal Growth 220 (2000) 254~262.
    54. M. N. Islam , T. B. Ghosh et al. , “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films ,” Thin Solid Films 280 (1996) 20-25
    55. 王佰揚,“不同抑制性被覆條件之敏化304不□鋼在高溫純水環
    境中的電化學行為研究,”國立清華大學碩士論文.
    56. 林秉漢,“氧化鋯抑制性被覆及氧化鋅處理之敏化304不□鋼在高溫純水環境中的電化學行為研究,”國立清華大學碩士論文.
    57. 簡源進,“氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究”國立清華大學碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE