簡易檢索 / 詳目顯示

研究生: 劉復誠
論文名稱: 利用轉錄組分析方式探討鐵資源競爭與宿主免疫反應在白色念珠菌感染斑馬魚模式中所扮演的角色
Transcriptome Analysis on Iron Competition and Host Immune Response during C. albicans Infection in Zebrafish
指導教授: 莊永仁
口試委員: 林澤
劉薏雯
莊永仁
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 45
中文關鍵詞: 白色念珠菌免疫病原宿主交互作用微陣列技術分析
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌是一種人類常見的真菌性病原菌,好發於人體的口腔、皮膚、黏膜等組織,對於免疫力正常的人來說,白色念珠菌並不會引發明顯的徵狀;然而在免疫缺乏的病人身上,白色念珠菌卻會造成嚴重感染,甚至導致病人死亡。先前的研究中指出,白色念珠菌感染哺乳類黏膜組織的過程中可分為早期病原菌貼附、中期菌絲侵入、晚期組織損壞等時期。然而,在傳統的老鼠模式動物中,要及時觀察到這些結果是相當困難的。
    在先前的實驗中,我們已利用斑馬魚系統研究白色念珠菌感染過程。在本篇研究中,根據斑馬魚組織切片,我們進而驗證白色念珠菌感染斑馬魚的過程與老鼠模式相似,並將其定義為病原菌貼附、菌絲入侵、組織損壞等三個時期。我們接著利用微點陣技術分析在感染過程中,斑馬魚宿主與白色念珠菌的基因表現變化情形。根據分析結果,發現白色念珠菌在感染的過程中會活化與鐵資源搶奪相關的基因表現量,反之在斑馬魚宿主上,則會停止與鐵恆定調控相關的基因表現,根據以上結果,推測鐵資源的競爭在病原與宿主交互作用中應扮演重要角色,亦與白色念珠菌感染過程及致病性有所關連。為驗證此推論,本次實驗藉由給予白色念珠菌額外的鐵離子,來探討鐵對病原菌致病能力的影響。而根據實驗的結果,發現額外的鐵資源與酸性的環境可以明顯延遲白色念珠菌的感染過程,並使得斑馬魚宿主具有較長的存活時間。然而經過進一步的驗證後,發現造成感染延遲的主要原因為鐵離子所導致的酸性環境,而非鐵離子本身所造成的影響。
    除了探討病原宿主間的資源競爭外,我們也著重在宿主免疫系統如何抵抗真菌性病原菌的感染。由微陣列技術分析的結果指出,宿主的免疫相關基因表現量在感染時有明顯調升的情形。除此之外,我們也發現白色念珠菌可以誘發斑馬魚後天免疫,而此後天免疫反應可幫助斑馬魚抵抗白色念珠菌的二次感染。由此結果,推論此斑馬魚感染模式未來應可應用於人類真菌性疾病之研究與魚類水產養殖疫苗的開發上。


    Candida albicans is a major fungal human pathogen, it exists as a commensal organism on the cutaneous and mucosal surfaces of healthy individuals, but in immuno-compromised patients, C. albicans is responsible for a number of life-threatening infections, causing considerable morbidity and mortality. Previous studies of C. albicans pathogenesis have suggested several steps which may lead to mucosal infection, including early adhesion, invasion, and late tissue damage. However, it is difficult to monitor these events in real time in the traditional mouse model system.
    In our previous study, we have established a novel zebrafish model for C. albicans infection study. We found C. albicans infection in zebrafish can also be staged into “adhesion’, “invasion”, and “damage”, which are comparable to the findings observed in the mouse model. We then analyzed the dynamic gene expression profiles of C. albicans and zebrafish during pathogen-host interaction. The results indicated that C. albicans activated its iron scavenging function during invasion and damage phases; whereas zebrafish appeared to cease the iron homeostasis function followed by massive hemorrhage toward the damage stage of infection. This suggested iron competition between the zebrafish host and fungal pathogen might be important for the emergence and progression of C. albicans virulence. To verify this, we administrated excessive iron in low pH condition into the microenvironment of the infection site. We observed significant delay in the progression of C. albicans hyphae formation, consequently, zebrafish survival time was prolonged. Nevertheless, we later found the virulence of C. albicans mostly associated with the microenvironmental pH. The addition of iron supplement only has a minor effect in reducing C. albicans’s virulence.
    In addition to resource competition, we also examined the host immune responses against the fungal pathogen. From our microarray data, we identified a set of immune related genes that were up-regulated in the zebrafish during C. albicans infection. Furthermore, we found the host adaptive immunity can help zebrafish defense itself from repeated C. albicans infection. Taken together, we showed zebrafish system can be used in studying human fungal infection disease, and might e useful in developing anti- vaccines for commercial fishes in aquaculture.

    中文摘要…………………………………………………………………I Abstract………………………………………………………………...II 誌謝…………………………………………………………………...IV Abbreviations………………………………………………………VIII 1. Introduction 1.1 Background of Candida albicans...................................................1 1.2 Zebrafish as a C. albicans infection model………………………1 1.3 Iron competition and microbial infection………………………...3 1.4 Host immune system.…………………………………………….4 1.5 Specific aims……………………………………………………..5 2. Materials and Methods 2.1 Zebrafish strains and maintenance……………………………….8 2.2 C. albicans strain and growth conditions………………………...8 2.3 Iron solution preparation…………………………………………8 2.4 Infection and survival assay……………………………………...8 2.5 Histological assay………………………………………………...9 2.6 C. albicans and zebrafish RNA purification……………………...9 2.7 Microarray experiments…………………………………………10 2.8 Microarray data analysis………………………………………10 3. Results 3.1 Pathogen hyphal formation and host survival defined three distinct stages during C. albicans infection in zebrafish………………...12 3.2 Iron-related genes and host immune-related genes may play important roles in host-pathogen interaction……………………13 3.3 The pathogen iron-related genes were up-regulated for iron uptake during infection…………………………………………………14 3.4 The host iron-related genes were mainly down regulated during C. albicans infection……………………………………………….14 3.5 Iron supplement and low pH affect host zebrafish survival under C. albicans infection…………………………………………….15 3.6 Low pH is a key effect to protect zebrafish against C. albicans infection…………………………………………………………16 3.7 Zebrafish immune-related genes play important roles against pathogen infection and damage cells repair…………………….17 3.8 The zebrafish adaptive immunity can protect itself against C. albicans infection……………………………………………….17 4. Discussion 4.1 The direction of C. albicans hyphae formation has tissue specific during infection in zebrafish…………………………………20 4.2 There are 3 stages: “adhesion”, “invasion”, and “damage”, during C. albicans infection in zebrafish……………………………….20 4.3 Iron-related genes play important role during infection………...21 4.3.1 Iron in host-pathogen interactions may exert diverse effects due to assay design or fundamental features of the zebrafish mode……………………………………………………...21 4.3.2 Virulence of C. albicans is mainly associated with pH in microenvironment………………………………………22 4.4 Zebrafish up-regulate genes to regulate immune responses during C. albicans infection…………………………………………….23 4.5 The adaptive immunity can protect zebrafish from C. albicans infection……………………………………………………………..23 List of Figures Fig. 1. Progression of C. albicans infection in zebrafish……………….28 Fig. 2. Expression profiles of the iron-related genes in C. albicans……30 Fig. 3. The C. albicans iron-related gene profiles show the ways to gain iron from host in different stages………………………………..31 Fig. 4. Expression profiles of the zebrafish iron-related genes…………33 Fig. 5. Iron supplement and low pH affect host zebrafish survival under C. albicans infection……………………………………………….34 Fig. 6. Iron supplement and low pH delay C. albicans hyphae formation during infection…………………………………………………35 Fig. 7. Iron supplement and neutral pH affect host zebrafish survival slightly under C. albicans infection, but low pH in microenvironment only can affect host survival under C. albicans infection…………………………………………………………36 Fig. 8. Expression profiles of the zebrafish immune-related genes……..37 Fig. 9. The zebrafish immune-related genes show the host immune and repair mechanisms during C. albicans infection………………..38 Fig. 10. The adaptive immunity activated host zebrafish have higher survival rate under C. albicans infection………………………..39 List of Tables Table 1. Candida albicans gene ontology analysis……………………..40 Table 2. Zebrafish gene ontology analysis……………………………...41 Supplemental Figure Fig S1. C. albicans infection in zebrafish has a high organ-specificity for liver.……………………………………………………………………42 Fig. S2. FAS toxic assay…...……………………………………………44 Fig. S3. Pre-treated zebrafish with DFO can’t protect zebrafish from C. albicans infection……………………………………………...45

    1. Odds, F.C., et al., Candida concentrations in the vagina and their association with signs and symptoms of vaginal candidosis. J Med Vet Mycol, 1988. 26(5): p. 277-83.
    2. Berman, J. and P.E. Sudbery, Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet, 2002. 3(12): p. 918-30.
    3. Gow, N.A., A.J. Brown, and F.C. Odds, Fungal morphogenesis and host invasion. Curr Opin Microbiol, 2002. 5(4): p. 366-71.
    4. Sundstrom, P., Adhesion in Candida spp. Cell Microbiol, 2002. 4(8): p. 461-9.
    5. Naglik, J.R., et al., Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis, 2003. 188(3): p. 469-79.
    6. Wachtler, B., et al., From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One, 2011. 6(2): p. e17046.
    7. Wilson, D., et al., Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res, 2009. 9(5): p. 688-700.
    8. Maccallum, D.M., Hosting infection: experimental models to assay Candida virulence. Int J Microbiol, 2012. 2012: p. 363764.
    9. Chao, C.C., et al., Zebrafish as a model host for Candida albicans infection. Infect Immun, 2010. 78(6): p. 2512-21.
    10. Mylonakis, E., A. Casadevall, and F.M. Ausubel, Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog, 2007. 3(7): p. e101.
    11. Zon, L.I. and R.T. Peterson, In vivo drug discovery in the zebrafish. Nat Rev Drug Discov, 2005. 4(1): p. 35-44.
    12. Drakesmith, H. and A. Prentice, Viral infection and iron metabolism. Nat Rev Microbiol, 2008. 6(7): p. 541-52.
    13. Schaible, U.E. and S.H. Kaufmann, Iron and microbial infection. Nat Rev Microbiol, 2004. 2(12): p. 946-53.
    14. Wang, L. and B.J. Cherayil, Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun, 2009. 1(5): p. 455-64.
    15. Almeida, R.S., D. Wilson, and B. Hube, Candida albicans iron acquisition within the host. FEMS Yeast Res, 2009. 9(7): p. 1000-12.
    16. Medzhitov, R. and C.A. Janeway, Jr., Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 1997. 9(1): p. 4-9.
    17. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801.
    18. Turvey, S.E. and D.H. Broide, Innate immunity. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S24-32.
    19. Erickson, K.L., E.A. Medina, and N.E. Hubbard, Micronutrients and innate immunity. J Infect Dis, 2000. 182 Suppl 1: p. S5-10.
    20. Iwasaki, A. and R. Medzhitov, Regulation of adaptive immunity by the innate immune system. Science, 2010. 327(5963): p. 291-5.
    21. Vos, Q., et al., B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev, 2000. 176: p. 154-70.
    22. Huber, B., et al., Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med, 1976. 143(6): p. 1534-9.
    23. Jiang, H. and L. Chess, An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest, 2004. 114(9): p. 1198-208.
    24. Airoldi, I., et al., Heterogeneous expression of interleukin-18 and its receptor in B-cell lymphoproliferative disorders deriving from naive, germinal center, and memory B lymphocytes. Clin Cancer Res, 2004. 10(1 Pt 1): p. 144-54.
    25. Ernst, J. and Z. Bar-Joseph, STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006. 7: p. 191.
    26. Phan, Q.T., et al., Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol, 2007. 5(3): p. e64.
    27. Kaplan, J. and T.V. O'Halloran, Iron metabolism in eukaryotes: Mars and Venus at it again. Science, 1996. 271(5255): p. 1510-2.
    28. Schroder, I., E. Johnson, and S. de Vries, Microbial ferric iron reductases. FEMS Microbiol Rev, 2003. 27(2-3): p. 427-47.
    29. Sosinska, G.J., et al., Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology, 2008. 154(Pt 2): p. 510-20.
    30. Protchenko, O. and C.C. Philpott, Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J Biol Chem, 2003. 278(38): p. 36582-7.
    31. Kharitonenkov, A., et al., FGF-21 as a novel metabolic regulator. J Clin Invest, 2005. 115(6): p. 1627-35.
    32. Andrews, N.C. and P.J. Schmidt, Iron homeostasis. Annu Rev Physiol, 2007. 69: p. 69-85.
    33. Kalev-Zylinska, M.L., et al., Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development, 2002. 129(8): p. 2015-30.
    34. Hazen, K.C., et al., Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues. Infect Immun, 1991. 59(3): p. 907-12.
    35. Huang, W., et al., Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis, 2004. 190(3): p. 624-31.
    36. Naglik, J.R., S.J. Challacombe, and B. Hube, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev, 2003. 67(3): p. 400-28, table of contents.
    37. Cutler, J.E., Putative virulence factors of Candida albicans. Annu Rev Microbiol, 1991. 45: p. 187-218.
    38. Van Cutsem, J. and J.R. Boelaert, Effects of deferoxamine, feroxamine and iron on experimental mucormycosis (zygomycosis). Kidney Int, 1989. 36(6): p. 1061-8.
    39. Fratti, R.A., et al., Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun, 1998. 66(1): p. 191-6.
    40. Evans, D.H., Cell signaling and ion transport across the fish gill epithelium. J Exp Zool, 2002. 293(3): p. 336-47.
    41. El Barkani, A., et al., Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol, 2000. 20(13): p. 4635-47.
    42. Ho, Y.R., et al., The enhancement of biofilm formation in Group B streptococcal isolates at vaginal pH. Med Microbiol Immunol, 2012.
    43. Hemalatha, R., et al., Effectiveness of vaginal tablets containing lactobacilli versus pH tablets on vaginal health and inflammatory cytokines: a randomized, double-blind study. Eur J Clin Microbiol Infect Dis, 2012.
    44. De Bernardis, F., et al., The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun, 1998. 66(7): p. 3317-25.
    45. Nemetz, A., et al., IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics, 1999. 49(6): p. 527-31.
    46. Nesic, O., et al., IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma, 2001. 18(9): p. 947-56.
    47. Croft, M., The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol, 2009. 9(4): p. 271-85.
    48. Zhang, M., et al., Edwardsiella tarda flagellar protein FlgD: a protective immunogen against edwardsiellosis. Vaccine, 2012. 30(26): p. 3849-56.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE