研究生: |
蔡宗霖 Tsai, Tsung-Lin. |
---|---|
論文名稱: |
數據分析與機器人流程自動化應用於高等教育招生領域 Data Analysis and Robotic Process Automation in Higher Education Admissions Yield |
指導教授: |
韓永楷
HON, WING-KAI 彭心儀 PENG, HSIN-YI |
口試委員: |
楊舜仁
YANG, SHUN-REN 蔡孟宗 TSAI, MENG-TSUNG |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 數據分析 、機器人流程自動化 |
外文關鍵詞: | Data analysis, RPA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數據分析在互聯網或商業領域一直以來發揮至關重要的作用,而目前高等教育也開始引入大數據分析來進行招生和學習效果分析。然而,並非所有高等教育機構都擁有足夠的專業程序員來處理和分析大量數據。因此,在本論文中,我們提出了一個機器人流程自動化系統來自動化數據的處理和分析,讓領域專家能夠更專注於探索數據背後的洞見。此外,本論文還將整合不同的數據源以供未來相關研究使用,並將研究成果系統轉化為圖形界面,提高使用便利性。
Data analysis has always played an essential role in the Internet and business areas, and nowadays higher education has also begun introducing big data analysis for enrollment and learning effectiveness analyses. However, not all higher education institutions have enough professional programmers to process and analyze large amounts of data.
Therefore, in this thesis, we propose an RPA (Robotic Process Automation) system to automate the processing and analysis of data, allowing domain experts to focus more on exploring the insights behind the data. In addition, the system will also integrate different data sources for future use in related research, and present research results with a graphical interface to improve the convenience of use.
[1] Santiago Aguirre and Alejandro Rodriguez. Automation of a Business Process Using Robotic Process Automation (RPA): A Case Study. In Applied Computer Sciences in Engineering, pages 65–71, 2017.
[2] Kanadpriya Basu, Treena Basu, Ron Buckmire, and Nishu Lal. Predictive Models of Student College Commitment Decisions Using Machine Learning. Data, 4(2), 2019.
[3] Lin Chang. Applying Data Mining to Predict College Admissions Yield: A Case Study. New Directions for Institutional Research, 2006(131):53–68, 2006.
[4] Hanan Abdullah Mengash. Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems. IEEE Access,8:55462–55470, 2020.
[5] Maxim A. Nazarenko and Tatiana V. Khronusova. Big Data in Modern Higher Education. Benefits and criticism. In International Conference on Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS), pages 676–679, 2017.
[6] Cindy Louise Poortman and Kim Schildkamp. Solving Student Achievement Problems with a Data Use Intervention for Teachers. Teaching and Teacher Education, 60:425–433, 2016.
[7] Ruangsak Trakunphutthirak, Yen Cheung, and Vincent C. S. Lee. A Study of Educational Data Mining: Evidence from a Thai University. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1):734–741, 2019.
[8] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data Mining with Big Data. IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(1):97–107, 2014.