研究生: |
江佩馨 Jiang, Pei-Shin |
---|---|
論文名稱: |
磁性奈米粒子應用於熱治療性質探討及熱治療結合放射治療之腫瘤微環境影響 Characteristics of Gadolinium-doped iron oxide nanoparticles for tumor therapy via magnetic field hyperthermia and the effect of its combination with radiotherapy on tumor microenvironments |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: |
張建文
Chang, Chien-Wen 黃郁棻 Huang, Yu-Fen 陳芳馨 Chen, Fang-Hsin 陳廷碩 Chen, Ting-Shou |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 奈米粒子 、磁熱治療 、放射線治療 、腫瘤微環境 、熱剝蝕 |
外文關鍵詞: | naoparticle, magnetic field hyperthermia, raditherapy, tumor microenvironment, thermal ablation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有高比吸收率(specific absorption rate, SAR)之含釓氧化鐵磁性奈米粒子(Gd-doped iron oxide nanoparticle,GdIONP),探討GdIONP磁熱性質,以及改變合成條件中Gd:Fe比例對奈米粒子粒徑及比吸收率(SAR)之影響。合成顆粒組成從Gd0.01Fe2.99O4至Gd0.04Fe2.96O4,平均磁奈米粒子粒徑為12nm至33nm。其中Gd0.03Fe2.97O4 在交互磁場強度246 Oe和52 kHz作用下產生磁熱效應,比吸收率(SAR)約為38Wg-1 [Fe],相較Fe3O4組成之氧化鐵奈米粒子的SAR值高出約4倍,且同時具有T2-weighted 磁振造影 (MR imaging),為一同時具有診斷及治療之多功能性奈米粒子。並進一步以小鼠腫瘤模式探討GdIONP於腫瘤熱治療效果,以小鼠前列腺癌(TRAMP-C1)腫瘤模式測試結果顯示GdIONP能縮小腫瘤大小及延遲腫瘤生長,更進一步將GdIONP磁熱治療結合放射線治療,結合治療能有效減緩腫瘤生長增加治療效果,同時探討GdIONP對腫瘤微環境影響,GdIONP於腫瘤磁熱治療中同時存在熱剝蝕(thermal ablation)及溫熱治療(mild hyperthermia),高溫熱剝蝕效應(>45°C)能直接損壞腫瘤血管使腫瘤細胞壞死,溫熱治療區(39~42°C)則能增加腫瘤血流及減少缺氧區域,增加結合放射線治療效果。
Recent advances in nanotechnology have contributed to the development of multifunctional nanoparticles as representative nanomedicine. Among different kinds of nanomaterials, iron oxide nanoparticles are among the most promising candidates in combining imaging and therapeutics functions in a single, multimodal platform. This study aimed to develop magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field, evaluate its therapeutic effects in mouse model and investigate the adjuvant effect for radiotherapy. Gadolinium-doped iron oxide nanoparticles (GdIONPs) were developed for use in tumor therapy via magnetic fluid hyperthermia (MFH). The effect of the Gd3+ dopant on the particle size and magnetic properties was investigated. The final particle composition varied from Gd0.01Fe2.99O4 to Gd0.04Fe2.96O4 with the average magnetic core diameters to be 12nm and 33nm respectively. The specific power adsorption rate (SAR) determined with a field strength of 246 Oe and 52 kHz had a maximum of 38 Wg−1 [Fe] for the Gd0.03Fe2.97O4 sample. This value is about 4 times higher than the reported SAR values for Fe3O4.
The heating rate for the nanoparticles in vivo and the potential for tumor therapy were determined in a mouse prostate tumor model, transgenic adenocarcinoma of the mouse prostate C1 (TRAMP-C1). The intramuscular TRAMP-C1 tumor treated with doped iron oxide displayed much slower tumor growth. The particle tracking were also demonstrated by MR imaging and laser ablation/inductively coupled plasma (LA-ICP-MS) mapping. The GdIONPs accumulated in tumor region during the treatment could be clearly tracked and quantified by T2-weighted MR imaging and LA-ICP-MS mapping. The therapeutic effects of GdIONP-mediated hyperthermia alone or in combination with radiotherapy were also evaluated. A significant increase in the tumor growth delay was observed following the treatment of thermotherapy only group (2.5 days), radiation therapy only group (4.5 days), and the combined radio-thermotherapy group (10 days). Immunohistochemical staining revealed a reduced hypoxia region with vascular disruption and extensive tumor necrosis following the combined radio-thermotherapy. These results indicate that GdIONP-mediated hyperthermia can improve the efficacy of radiotherapy by its dual functions in high temperature (temperature greater than 45 °C)-mediated thermal ablation and mild-temperature hyperthermia (MTH) (temperature between 39 ~ 42 °C)-mediated reoxygenation.
1. van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13(8):1173-84.
2. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, and Riess H. The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol. 2002;43(1):33-56.
3. Lagendijk JJW. Hyperthermia treatment planning. Phys Med Biol. 2000;45(5):R61-R76.
4. Bush W. Über den Finfluss, wetchen heftigere Eryspelen zuweilen auf organlsierte Neubildungen dusuben. Verh Natruch Preuss Rhein Westphal. 1886;23(3.
5. Westermark F. Uber die Behandlung des ulcerirenden Cervix carcinoma mittels Knonstanter Warme. Zentralbl Gynkol. 1898:5.
6. Haemmerich D, and Laeseke PF. Thermal tumour ablation: devices, clinical applications and future directions. Int J Hyperthermia. 2005;21(8):755-60.
7. Goldberg SN. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound. 2001;13(2):129-47.
8. Mensel B, Weigel C, and Hosten N. Laser-induced thermotherapy. Recent Results Cancer Res. 2006;167(69-75.
9. Haar GT, and Coussios C. High intensity focused ultrasound: past, present and future. Int J Hyperthermia. 2007;23(2):85-7.
10. Harima Y, Nagata K, Harima K, Ostapenko VV, Tanaka Y, and Sawada S. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia. 2001;17(2):97-105.
11. Izzo F. Other thermal ablation techniques: microwave and interstitial laser ablation of liver tumors. Ann Surg Oncol. 2003;10(5):491-7.
12. Wust P, Nadobny J, Fahling H, Riess H, Koch K, John W, and Felix R. [Determinant factors and disturbances in controlling power distribution patterns by the hyperthermia-ring system BSD-2000. 2. Measuring techniques and analysis]. Strahlenther Onkol. 1991;167(3):172-80.
13. Moroz P, Jones SK, and Gray BN. Status of hyperthermia in the treatment of advanced liver cancer. J Surg Oncol. 2001;77(4):259-69.
14. Jordan AE, M.; Bischof J.C. Magnetic nanoparticles for cancer therapy. Taylor & Francis; 2012.
15. Prosnitz LR, and Dewhirst MW. PROGRESS TOWARD A THERMAL DOSIMETRY SYSTEM. Int J Radiat Oncol Biol Phys. 1995;33(4):963-4.
16. Oleson JR, Heusinkveld RS, and Manning MR. HYPERTHERMIA BY MAGNETIC INDUCTION .2. CLINICAL-EXPERIENCE WITH CONCENTRIC ELECTRODES. Int J Radiat Oncol Biol Phys. 1983;9(4):549-56.
17. Brezovich IA, Atkinson WJ, and Lilly MB. LOCAL HYPERTHERMIA WITH INTERSTITIAL TECHNIQUES. Cancer Res. 1984;44(10):4752-6.
18. Brezovich I. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med Phys Monogr. 1988;16(30.
19. Stauffer PR, Cetas TC, Fletcher AM, Deyoung DW, Dewhirst MW, Oleson JR, and Roemer RB. OBSERVATIONS ON THE USE OF FERROMAGNETIC IMPLANTS FOR INDUCING HYPERTHERMIA. IEEE Trans Biomed Eng. 1984;31(1):76-90.
20. Stauffer PR, Cetas TC, and Jones RC. MAGNETIC INDUCTION-HEATING OF FERROMAGNETIC IMPLANTS FOR INDUCING LOCALIZED HYPERTHERMIA IN DEEP-SEATED TUMORS. IEEE Trans Biomed Eng. 1984;31(2):235-51.
21. Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia. 2008;24(6):451-66.
22. Pankhurst QA, Connolly J, Jones SK, and Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics. 2003;36(13):R167-R81.
23. Goldstein LS, Dewhirst MW, Repacholi M, and Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperthermia. 2003;19(3):373-84.
24. Suto R, and Srivastava PK. A MECHANISM FOR THE SPECIFIC IMMUNOGENICITY OF HEAT-SHOCK PROTEIN-CHAPERONED PEPTIDES. Science. 1995;269(5230):1585-8.
25. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, and Schlag PM. Hyperthermia in combined treatment of cancer. Lancet Oncology. 2002;3(8):487-97.
26. Santos-Marques J, Carvalho F, Sousa C, Remiao F, Vitorino R, Amado F, Ferreira R, Duarte JA, and Bastos MD. Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. Toxicology. 2006;224(3):210-8.
27. Raaphorst GP, Freeman ML, and Dewey WC. RADIOSENSITIVITY AND RECOVERY FROM RADIATION-DAMAGE IN CULTURED CHO-CELLS EXPOSED TO HYPERTHERMIA AT 42.5-DEGREES-C OR 45.5-DEGREES-C. Radiat Res. 1979;79(2):390-402.
28. Ebrahimi M. On the temperature control in self-controlling hyperthermia therapy. Journal of Magnetism and Magnetic Materials. 2016;416(134-40.
29. Simon CJ, Dupuy DE, and Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25 Suppl 1(S69-83.
30. Gohl J, and Hohenberger W. [Regional hyperthermic perfusion--therapeutic concept and long term results]. Langenbecks Arch Chir Suppl Kongressbd. 1992:494-501.
31. Alexander HR, and Fraker DL. Treatment of peritoneal carcinomatosis by continuous hyperthermic peritoneal perfusion with cisplatin. Cancer Treat Res. 1996;81(41-50.
32. Vertree RA, Leeth A, Girouard M, Roach JD, and Zwischenberger JB. Whole-body hyperthermia: a review of theory, design and application. Perfusion. 2002;17(4):279-90.
33. Jordan A. EuroNanoForum Proc. 2005:76-80.
34. Tanaka K, Ito T, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, and Honda H. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Biosci Bioeng. 2005;100(1):112-5.
35. Oleson JR, Cetas TC, and Corry PM. HYPERTHERMIA BY MAGNETIC INDUCTION - EXPERIMENTAL AND THEORETICAL RESULTS FOR CO-AXIAL COIL PAIRS. Radiat Res. 1983;95(1):175-86.
36. Ito A, Shinkai M, Honda H, and Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1-11.
37. Mornet S, Vasseur S, Grasset F, and Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry. 2004;14(14):2161-75.
38. Pankhurst QA, Thanh NTK, Jones SK, and Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics. 2009;42(22).
39. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, and Taylor CB. SELECTIVE INDUCTIVE HEATING OF LYMPH NODES. Ann Surg. 1957;146(4):596-606.
40. Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Gruttner C, and Ivkov R. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20(39):7.
41. Johannsen M, Gneueckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, and Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. European Urology. 2007;52(6):1653-62.
42. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA, and Jordan A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. International Journal of Hyperthermia. 2005;21(7):637-47.
43. Hilger I, Andra W, Hergt R, Hiergeist R, and Kaiser WA. Magnetic thermotherapy of breast tumors: An experimental therapeutic approach. Rofo-Fortschr Gebiet Rontgenstrahlen Bildgeb Verfahr. 2005;177(4):507-15.
44. Creixell M, Bohorquez AC, Torres-Lugo M, and Rinaldi C. EGFR-Targeted Magnetic Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise. Acs Nano. 2011;5(9):7124-9.
45. Dhavalikar R, and Rinaldi C. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients. Journal of Magnetism and Magnetic Materials. 2016;419(267-73.
46. Bauer LM, Situ SF, Griswold MA, and Samia ACS. Magnetic Particle Imaging Tracers: State-of-the-Art and Future Directions. J Phys Chem Lett. 2015;6(13):2509-17.
47. Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldofner N, Scholz R, Koch M, Lein M, Jung K, et al. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic dunning R3327 rat model. Prostate. 2005;64(3):283-92.
48. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, Jung K, Jordan A, Wust P, and Loening SA. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. International Journal of Hyperthermia. 2007;23(3):315-23.
49. Kossatz S, Ludwig R, Dahring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, and Hilger I. High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharm Res. 2014;31(12):3274-88.
50. Wang GH, Xu DR, Chai Q, Tan XL, Zhang Y, Gu N, and Tang JT. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression. Oncol Lett. 2014;7(5):1370-4.
51. Laurent S, Dutz S, Hafeli UO, and Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1-2):8-23.
52. Dutz S, and Hergt R. Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology. 2014;25(45):28.
53. Kumar C, and Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63(9):789-808.
54. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, and Lee TR. Tuning the Magnetic Properties of Nanoparticles. Int J Mol Sci. 2013;14(8):15977-6009.
55. Hergt R, Andra W, d'Ambly CG, Hilger I, Kaiser WA, Richter U, and Schmidt HG. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn. 1998;34(5):3745-54.
56. Brown WF. THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE. Phys Rev. 1963;130(5):1677-+.
57. Shah RR, Davis TP, Gover AL, Nikles DE, and Brazel CS. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials. 2015;387(96-106.
58. Khandhar AP, Ferguson RM, Simon JA, and Krishnan KM. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys. 2012;111(7):3.
59. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed Engl. 2005;44(19):2873-7.
60. Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, and Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. Journal of Magnetism and Magnetic Materials. 2004;270(3):345-57.
61. Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, and Li CZ. Nanomedicine: Magnetic Nanoparticles and their Biomedical Applications. Current Medicinal Chemistry. 2010;17(27):3120-41.
62. Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, and Angelakeris M. Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles. IEEE Trans Magn. 2012;48(4):1320-3.
63. Gonzales-Weimuller M, Zeisberger M, and Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials. 2009;321(13):1947-50.
64. Purushotham S, and Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys. 2010;107(11):9.
65. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, and Pellegrino T. Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. Acs Nano. 2012;6(4):3080-91.
66. Guardia P, Riedinger A, Nitti S, Pugliese G, Marras S, Genovese A, Materia ME, Lefevre C, Manna L, and Pellegrino T. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. J Mat Chem B. 2014;2(28):4426-34.
67. Kandasamy G, and Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191-218.
68. Kruse AM, Meenach SA, Anderson KW, and Hilt JZ. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater. 2014;10(6):2622-9.
69. de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, and Hernando A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in gamma-Fe2O3 Nanoparticles. Journal of Physical Chemistry C. 2012;116(48):25602-10.
70. Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, Ricolleau C, Roux S, Wilhelm C, Gazeau F, et al. Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. Journal of Physical Chemistry C. 2012;116(29):15702-12.
71. Song MJ, Zhang Y, Hu SL, Song LN, Dong JL, Chen ZP, and Gu N. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2012;408(114-21.
72. Barick KC, Singh S, Bahadur D, Lawande MA, Patkar DP, and Hassan PA. Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci. 2014;418(120-5.
73. Mi Y, Liu X, Zhao J, Ding J, and Feng SS. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials. 2012;33(30):7519-29.
74. Bealle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clement O, Gazeau F, Wilhelm C, and Menager C. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir. 2012;28(32):11834-42.
75. Gonzales-Weimuller M, Zeisberger M, and Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321(13):1947-50.
76. Mojica Pisciotti ML, Lima E, Jr., Vasquez Mansilla M, Tognoli VE, Troiani HE, Pasa AA, Creczynski-Pasa TB, Silva AH, Gurman P, Colombo L, et al. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. J Biomed Mater Res B Appl Biomater. 2014;102(4):860-8.
77. Habash RW, Bansal R, Krewski D, and Alhafid HT. Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006;34(6):491-542.
78. Datta NR, Ordonez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E, and Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742-53.
79. Jha SS, P.K.; Malviya, R. Hyperthermia: Role and Risk Factor for Cancer Treat Ach Life Sci 2016;10(2):7.
80. Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546-54.
81. Barlogie B, Corry PM, and Drewinko B. In vitro thermochemotherapy of human colon cancer cells with cis-dichlorodiammineplatinum(II) and mitomycin C. Cancer Res. 1980;40(4):1165-8.
82. Dahl O. Interaction of hyperthermia and chemotherapy. Recent Results Cancer Res. 1988;107(157-69.
83. Hahn GM. Potential for therapy of drugs and hyperthermia. Cancer Res. 1979;39(6 Pt 2):2264-8.
84. Masunaga S, Ono K, Hori H, Kinashi Y, Suzuki M, Takagaki M, Kasai S, Nagasawa H, and Uto Y. Modification of tirapazamine-induced cytotoxicity in combination with mild hyperthermia and/or nicotinamide: reference to effect on quiescent tumour cells. Int J Hyperthermia. 1999;15(1):7-16.
85. Orel V, Shevchenko A, Romanov A, Tselepi M, Mitrelias T, Barnes CH, Burlaka A, Lukin S, and Shchepotin I. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomedicine. 2015;11(1):47-55.
86. Woodhall B, Pickrell KL, Georgiade NG, Mahaley MS, and Dukes HT. EFFECT OF HYPERTHERMIA UPON CANCER CHEMOTHERAPY - APPLICATION TO EXTERNAL CANCERS OF HEAD AND FACE STRUCTURES. Ann Surg. 1960;151(5):750-9.
87. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dahring H, Ettelt V, Lazaro-Carrillo A, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17(66.
88. Yuwen LC, W.; Congyi, Z.; Haixiang, W.; Zhiyong, W.; Songsheng, Q. . Microcalorimetric study of the metabolism of U-937 cells undergoing apoptosis induced by the combined treatment of hyperthermia and chemotherapy. J Therm Biol. 2002;27(2):6.
89. Shingleton WW. Selective heating and cooling of tissue in cancer chemotherapy. Ann Surg. 1962;156(408-16.
90. Bull JM. An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res. 1984;44(10 Suppl):4853s-6s.
91. Kampinga HH, and Dikomey E. Hyperthermic radiosensitization: mode of action and clinical relevance. International Journal of Radiation Biology. 2001;77(4):399-408.
92. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, and Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000;355(9210):1119-25.
93. Vujaskovic Z, and Song CW. Physiological mechanisms underlying heat-induced radiosensitization. Int J Hyperthermia. 2004;20(2):163-74.
94. Bicher HI, and Mitagvaria N. Circulatory responses of malignant tumors during hyperthermia. Microvasc Res. 1981;21(1):19-26.
95. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Dodge RK, Charles HC, Samulski TV, Prosnitz LR, and Dewhirst MW. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res. 1996;56(23):5347-50.
96. Masunaga S, Nagata K, Suzuki M, Kashino G, Kinashi Y, and Ono K. Inhibition of repair of radiation-induced damage by mild temperature hyperthermia, referring to the effect on quiescent cell populations. Radiat Med. 2007;25(8):417-25.
97. Henle KJ, and Leeper DB. The modification of radiation damage in CHO cells by hyperthermia at 40 and 45 degrees C1. Radiat Res. 1977;70(2):415-24.
98. Xu M, Myerson RJ, Xia Y, Whitehead T, Moros EG, Straube WL, and Roti JL. The effects of 41 degrees C hyperthermia on the DNA repair protein, MRE11, correlate with radiosensitization in four human tumor cell lines. Int J Hyperthermia. 2007;23(4):343-51.
99. Johannsen M, Thiesen B, Gneveckow U, Taymoorian K, Waldofner N, Scholz R, Deger S, Jung K, Loening SA, and Jordan A. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate. 2006;66(1):97-104.
100. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, and Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103(2):317-24.
101. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53-60.
102. Attaluri A, Kandala SK, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y, DeWeese TL, Herman C, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int J Hyperthermia. 2015;31(4):359-74.
103. Horsman MR, and Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clinical Oncology. 2007;19(6):418-26.
104. Horsman MR, and Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007;19(6):418-26.
105. Moeller BJ, Richardson RA, and Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer and Metastasis Reviews. 2007;26(2):241-8.
106. Tarnawski R, Kummermehr J, and Trott KR. The radiosensitivity of recurrent clones of an irradiated murine squamous cell carcinoma in the in vitro megacolony system. Radiotherapy and Oncology. 1998;46(2):209-14.
107. Zhang Y, Li M, Yao Q, and Chen C. Recent advances in tumor hypoxia: Tumor progression, molecular mechanisms, and therapeutic implications. Medical Science Monitor. 2007;13(10):RA175-RA80.
108. Iversen AB, Busk M, and Horsman MR. Induction of hypoxia by vascular disrupting agents and the significance for their combination with radiation therapy. Acta Oncol. 2013;52(7):1320-6.
109. Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, Park HC, Deorukhkar A, Stafford RJ, Cho SH, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Letters. 2008;8(5):1492-500.
110. Griffin RJ, Dings RPM, Jamshidi-Parsian A, and Song CW. Mild temperature hyperthermia and radiation therapy: Role of tumour vascular thermotolerance and relevant physiological factors. International Journal of Hyperthermia. 2010;26(3):256-63.
111. Hiergeist R, Andra W, Buske N, Hergt R, Hilger I, Richter U, and Kaiser W. Application of magnetite ferrofluids for hyperthermia. Journal of Magnetism and Magnetic Materials. 1999;201(420-2.
112. Duguet E, Vasseur S, Mornet S, and Devoisselle J-M. Magnetic nanoparticles and their applications in medicine. Nanomedicine. 2006;1(2):157-68.
113. Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, and Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32(7):1890-905.
114. Jordan A, Scholz R, Wust P, Fahling H, and Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 1999;201(413-9.
115. Moroz P, Jones SK, and Gray BN. Magnetically mediated hyperthermia: current status and future directions. International Journal of Hyperthermia. 2002;18(4):267-84.
116. Salunkhe AB, Khot VM, and Pawar SH. Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem. 2014;14(5):572-94.
117. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials. 2002;252(1-3):370-4.
118. Babincova M, Altanerova V, Altaner C, Cicmanec P, and Babinec P. In vivo heating of magnetic nanoparticles in alternating magnetic field. Medical Physics. 2004;31(8):2219-21.
119. Wang XM, Gu HC, and Yang ZQ. The heating effect of magnetic fluids in an alternating magnetic field. Journal of Magnetism and Magnetic Materials. 2005;293(1):334-40.
120. Ma M, Wu Y, Zhou H, Sun YK, Zhang Y, and Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials. 2004;268(1-2):33-9.
121. Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, and Lin Y-J. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. Journal of Materials Chemistry. 2007;17(46):4914-8.
122. Jiang P-S, Drake P, Cho H-J, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, and Lin Y-J. Tailored Nanoparticles for Tumour Therapy. Journal of Nanoscience and Nanotechnology. 2012;12(6):5076-81.
123. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, and Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: Ex vivo study. Jpn J Cancer Res. 1997;88(7):630-2.
124. Barker AJ, Cage B, Russek S, and Stoldt CR. Ripening during magnetite nanoparticle synthesis: Resulting interfacial defects and magnetic properties. J Appl Phys. 2005;98(6):7.
125. Chen F-H, Chiang C-S, Wang C-C, Tsai C-S, Jung S-M, Lee C-C, McBride WH, and Hong J-H. Radiotherapy Decreases Vascular Density and Causes Hypoxia with Macrophage Aggregation in TRAMP-C1 Prostate Tumors. Clinical Cancer Research. 2009;15(5):1721-9.
126. Das N, Mondal P, and Bhattacharya D. Particle-size dependence of orbital order-disorder transition in LaMnO3. Phys Rev B. 2006;74(1):6.
127. Kafrouni L, and Savadogo O. Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog Biomater. 2016;5(3-4):147-60.
128. Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, and Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628-35.
129. Liu C, Zou B, Rondinone AJ, and Zhang ZJ. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J Am Chem Soc. 2001;123(18):4344-5.
130. Wang Q, Deng ZS, and Liu J. Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia. Journal of Nanoparticle Research. 2012;14(7).
131. Costello LC, Feng P, Milon B, Tan M, and Franklin RB. Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis. 2004;7(2):111-7.
132. Milanino R, Marrella M, Moretti U, Concari E, and Velo GP. Copper and zinc status in rats with acute inflammation: focus on the inflamed area. Agents Actions. 1988;24(3-4):356-64.
133. Akcil E, Yavuz G, and Kocak M. Effects of inflammation and antiinflammatory treatment on serum trace elements concentrations. Biol Trace Elem Res. 2003;93(1-3):95-104.
134. Hall DM, Baumgardner KR, Oberley TD, and Gisolfi CV. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol. 1999;276(5 Pt 1):G1195-203.
135. Pani G, Galeotti T, and Chiarugi P. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev. 2010;29(2):351-78.
136. Nielsen FH, Hunt CD, and Uthus EO. Interactions between essential trace and ultratrace elements. Ann N Y Acad Sci. 1980;355(152-64.
137. Hsieh Y-K, Jiang P-S, Yang B-S, Sun T-Y, Peng H-H, and Wang C-F. Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia. Analytical and Bioanalytical Chemistry. 2011;401(3):909-15.
138. Wu L, Mendoza-Garcia A, Li Q, and Sun S. Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chem Rev. 2016;116(18):10473-512.
139. Hergt R, Dutz S, and Zeisberger M. Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology. 2010;21(1):015706.
140. Hergt R, and Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials. 2007;311(1):187-92.
141. Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, and Teran FJ. Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews. 2015;2(4):35.
142. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, and Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc. 2006;128(22):7383-9.
143. Ai H, Flask C, Weinberg B, Shuai X, Pagel MD, Farrell D, Duerk J, and Gao JM. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Advanced Materials. 2005;17(16):1949-+.
144. Xuan SH, Wang F, Lai JMY, Sham KWY, Wang YXJ, Lee SF, Yu JC, Cheng CHK, and Leung KCF. Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications. Acs Applied Materials & Interfaces. 2011;3(2):237-44.
145. Diederich CJ. Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. International Journal of Hyperthermia. 2005;21(8):745-53.
146. Song CW. Effect of Local Hyperthermia on Blood Flow and Microenvironment: A Review. Cancer Res. 1984;44(10.
147. Song CW, Shakil A, Osborn JL, and Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures. International Journal of Hyperthermia. 2009;25(2):91-5.
148. Hokland SL, Nielsen T, Busk M, and Horsman MR. Imaging tumour physiology and vasculature to predict and assess response to heat. International Journal of Hyperthermia. 2010;26(3):264-72.
149. Song CW, Park HJ, Lee CK, and Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. International Journal of Hyperthermia. 2005;21(8):761-7.
150. Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58-62.
151. Johannsen M, Jordan A, Scholz R, Koch M, Lein M, Deger S, Roigas J, Jung K, and Loening S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. Journal of Endourology. 2004;18(5):495-500.
152. Johannsen M, Gneveckow U, Taymoonan K, Thiesen B, Waldofener N, Scholz R, Cho CH, Jordan A, Wust P, and Loening SA. Thermotherapy using magnetic nanoparticles in patients with locally recurrent prostate cancer: Results of a prospective phase I trial. Eur Urol Suppl. 2007;6(2):201-.