簡易檢索 / 詳目顯示

研究生: 黃郁涵
Huang, Yu Han
論文名稱: 利用人類Aβ42轉基因果蠅建立 阿茲海默症模式之研究
Modeling human Aβ42 toxicity in Drosophila for Alzheimer's disease
指導教授: 張慧雲
Chang, Hui Yun
口試委員: 桑自剛
Sang, Tzu Kang
汪宏達
Wang, Horng Dar
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 34
中文關鍵詞: 阿茲海默症類澱粉胜肽果蠅
外文關鍵詞: Alzheimer's disease, Amyloid peptide, Drosophila melanogaster
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默症是目前最常見的一種神經退化性疾病。Amyloid beta 42 (Aβ42)胜肽被認為在其致病機轉中扮演了重要的角色。先前研究發現早期症狀的發生主要與麩氨酸神經元和膽鹼性神經元功能異常有關,然而這些異常可能與Aβ42有關。因此,本篇研究利用果蠅做為模式生物來探究Aβ42對這兩種神經系統之影響。我們發現將Aβ42表現於麩氨酸神經元中會先造成過量的麩氨酸囊泡釋放,隨後引起突觸及神經元的退化,且造成果蠅壽命減短及運動能力下降。同樣地,Aβ42也引發麩氨酸神經元之退化。除此之外,我們也去探討Aβ42 和微管蛋白tau間是否有交互作用,發現tau會加強Aβ42 所引起的神經毒性。總結以上結果,此Aβ42果蠅也許能做為一個阿茲海默症模型來研究其中致病之分子機制,希望對此疾病有著更進一步的了解並找出新的治療方向。


    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most common cause of dementia in the elderly people. Amyloid beta 42 peptide (Aβ42) is the primary constituent of amyloid plaques, a major pathological hallmark of AD. It is well known that the dysfunction in both cholinergic and glutamatergic systems contribute to the symptomatology of AD, but the exact causes remain unclear. Here, we use Drosophila as a model system to examine the effects of overexpression of the human Aβ42 peptides on the populations of glutamatergic and cholinergic neurons. The expression of Aβ42 resulted in an initially increased glutamate neurotransmission, and subsequently Aβ42 led to an age-dependent progressive degeneration of neurons. The neurodegeneration was accompanied by defects in locomotion activity and decreased longevity. Similarly, flies overexpressing Aβ42 in cholinergic neurons cause an age-dependent neurodegeneration, and shortened lifespan. Moreover, we found that there may be an interaction between Aβ42 and wild-type tau protein. Taken together, our flies may serve as an early-onset model to understand molecular mechanisms underlying Aβ toxicity and to discover the new therapeutic targets for AD.

    Acknowledgement I Abstract II 摘要 III List of Figures V Introduction 1  Alzheimer’s disease 1  The glutamatergic neurons and Alzheimer's disease 2  The cholinergic neurons and Alzheimer's disease 4 Materials and Methods 6  Drosophila genetics and stocks 6  Immunohistochemistry and confocal images 6  Behavioral analysis 7  Lifespan assay 7  Scanning electron microscopy 7 Results 8  Human Aβ42 overexpression in the glutamatergic neurons shortened lifespan 8  Expression of human Aβ42 resulted in an early-onset degeneration of glutamatergic neurons. 10  Human Aβ42 overexpression caused an age-dependent decrease in glutamatergic neurotransmission 14  Overexpression of human Aβ42 in cholinergic neurons caused an early defects in locomotion and lifespan. 17  Human Aβ42 induced an age-dependent neurodegeneration of cholinergic neurons 19  Tau protein exacerbates the neurotoxicity caused by human Aβ42 expression 21 Discussion 25 References 28

    Alvarez, G., Munoz-Montano, J. R., Satrustegui, J., Avila, J., Bogonez, E., & Diaz-Nido, J. (2002). Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disord, 4(3), 153-165.
    Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex, 1(1), 103-116.
    Bell, K. F., Bennett, D. A., & Cuello, A. C. (2007). Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci, 27(40), 10810-10817. doi: 10.1523/JNEUROSCI.3269-07.2007
    Bolshakova, O. I., Zhuk, A. A., Rodin, D. I., Kislik, G. A., & Sarantseva, S. V. (2014). Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russian Journal of Genetics: Applied Research, 4(2), 113-121. doi: 10.1134/s2079059714020026
    Braak, H., & Braak, E. (1998). Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl, 53, 127-140.
    Braak, H., Braak, E., & Bohl, J. (1993). Staging of Alzheimer-related cortical destruction. Eur Neurol, 33(6), 403-408.
    Butterfield, D. A., & Pocernich, C. B. (2003). The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs, 17(9), 641-652.
    Cattaert, D., & Birman, S. (2001). Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J Neurobiol, 48(1), 58-73.
    Cavallucci, V., D'Amelio, M., & Cecconi, F. (2012). Abeta toxicity in Alzheimer's disease. Mol Neurobiol, 45(2), 366-378. doi: 10.1007/s12035-012-8251-3
    Collingridge, G. L., & Lester, R. A. (1989). Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev, 41(2), 143-210.
    Crowther, D. C., Kinghorn, K. J., Miranda, E., Page, R., Curry, J. A., Duthie, F. A., . . . Lomas, D. A. (2005). Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease. Neuroscience, 132(1), 123-135. doi: 10.1016/j.neuroscience.2004.12.025
    del Valle Rodriguez, A., Didiano, D., & Desplan, C. (2012). Power tools for gene expression and clonal analysis in Drosophila. Nat Methods, 9(1), 47-55. doi: 10.1038/nmeth.1800
    Francis, P. T. (2003). Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry, 18(Suppl 1), S15-21. doi: 10.1002/gps.934
    Gong, Y., & Lippa, C. F. (2010). Review: disruption of the postsynaptic density in Alzheimer's disease and other neurodegenerative dementias. Am J Alzheimers Dis Other Demen, 25(7), 547-555. doi: 10.1177/1533317510382893
    Greenamyre, J. T. (1986). The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol, 43(10), 1058-1063.
    Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., & Malinow, R. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52(5), 831-843. doi: 10.1016/j.neuron.2006.10.035
    Jang, B. G., In, S., Choi, B., & Kim, M. J. (2014). Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. Neuroreport, 25(16), 1281-1288. doi: 10.1097/WNR.0000000000000260
    Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., . . . Muller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325(6106), 733-736. doi: 10.1038/325733a0
    Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698-U1600. doi: Doi 10.1038/Nrd3505
    Kullmann, D. M., & Lamsa, K. P. (2007). Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci, 8(9), 687-699. doi: 10.1038/nrn2207
    Masliah, E., Alford, M., DeTeresa, R., Mallory, M., & Hansen, L. (1996). Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol, 40(5), 759-766. doi: 10.1002/ana.410400512
    Morris, R. G., & Kopelman, M. D. (1986). The memory deficits in Alzheimer-type dementia: a review. Q J Exp Psychol A, 38(4), 575-602.
    Murphy, M. P., & LeVine, H., 3rd. (2010). Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis, 19(1), 311-323. doi: 10.3233/JAD-2010-1221
    Murrell, J., Farlow, M., Ghetti, B., & Benson, M. D. (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science, 254(5028), 97-99.
    Park, J., Jang, M., & Chang, S. (2013). Deleterious effects of soluble amyloid-beta oligomers on multiple steps of synaptic vesicle trafficking. Neurobiol Dis, 55, 129-139. doi: 10.1016/j.nbd.2013.03.004
    Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., & Herms, J. (2006). Synapse formation and function is modulated by the amyloid precursor protein. Journal of Neuroscience, 26(27), 7212-7221. doi: Doi 10.1523/Jneurosci.1450-06.2006
    Pulver, S. R., Pashkovski, S. L., Hornstein, N. J., Garrity, P. A., & Griffith, L. C. (2009). Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol, 101(6), 3075-3088. doi: 10.1152/jn.00071.2009
    Roselli, F., Hutzler, P., Wegerich, Y., Livrea, P., & Almeida, O. F. (2009). Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1-40) through divergent NMDAR-dependent signalling pathways. PLoS One, 4(6), e6011. doi: 10.1371/journal.pone.0006011
    Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., . . . Younkin, S. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med, 2(8), 864-870.
    Schliebs, R. (2005). Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res, 30(6-7), 895-908. doi: 10.1007/s11064-005-6962-9
    Selkoe, D. J., & Schenk, D. (2003). Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol, 43, 545-584. doi: 10.1146/annurev.pharmtox.43.100901.140248
    Song, M. S., Rauw, G., Baker, G. B., & Kar, S. (2008). Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci, 28(10), 1989-2002. doi: 10.1111/j.1460-9568.2008.06498.x
    Stoothoff, W. H., & Johnson, G. V. (2005). Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta, 1739(2-3), 280-297. doi: 10.1016/j.bbadis.2004.06.017
    Turner, P. R., O'Connor, K., Tate, W. P., & Abraham, W. C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol, 70(1), 1-32.
    Wang, H. Y., Lee, D. H., D'Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem, 275(8), 5626-5632.
    Wei, W., Nguyen, L. N., Kessels, H. W., Hagiwara, H., Sisodia, S., & Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci, 13(2), 190-196. doi: 10.1038/nn.2476
    Welander, H., Franberg, J., Graff, C., Sundstrom, E., Winblad, B., & Tjernberg, L. O. (2009). Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem, 110(2), 697-706. doi: 10.1111/j.1471-4159.2009.06170.x
    Wu, T. H., Lu, Y. N., Chuang, C. L., Wu, C. L., Chiang, A. S., Krantz, D. E., & Chang, H. Y. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol, 125(5), 711-725. doi: 10.1007/s00401-013-1105-x

    Bell, K. F., Bennett, D. A., & Cuello, A. C. (2007). Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci, 27(40), 10810-10817. doi: 10.1523/JNEUROSCI.3269-07.2007
    Bolshakova, O. I., Zhuk, A. A., Rodin, D. I., Kislik, G. A., & Sarantseva, S. V. (2014). Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russian Journal of Genetics: Applied Research, 4(2), 113-121. doi: 10.1134/s2079059714020026
    Braak, H., & Braak, E. (1998). Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl, 53, 127-140.
    Cavallucci, V., D'Amelio, M., & Cecconi, F. (2012). Abeta toxicity in Alzheimer's disease. Mol Neurobiol, 45(2), 366-378. doi: 10.1007/s12035-012-8251-3
    Francis, P. T. (2003). Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry, 18(Suppl 1), S15-21. doi: 10.1002/gps.934
    Masliah, E., Alford, M., DeTeresa, R., Mallory, M., & Hansen, L. (1996). Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol, 40(5), 759-766. doi: 10.1002/ana.410400512
    Murphy, M. P., & LeVine, H., 3rd. (2010). Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis, 19(1), 311-323. doi: 10.3233/JAD-2010-1221
    Musiek, E. S., & Holtzman, D. M. (2015). Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci, 18(6), 800-806. doi: 10.1038/nn.4018
    Park, J., Jang, M., & Chang, S. (2013). Deleterious effects of soluble amyloid-beta oligomers on multiple steps of synaptic vesicle trafficking. Neurobiol Dis, 55, 129-139. doi: 10.1016/j.nbd.2013.03.004
    Selkoe, D. J., & Schenk, D. (2003). Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol, 43, 545-584. doi: 10.1146/annurev.pharmtox.43.100901.140248

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE