簡易檢索 / 詳目顯示

研究生: 鄔元卿
Wu, Yuan-Ching
論文名稱: 探討圖片尺寸不變之視覺分享
A Study on Image Size Invariant Visual Sharing
指導教授: 陳朝欽
Chen, Chaur-Chin
口試委員: 張隆紋
Chang, Long-Wen
賴尚宏
Lai, Shang-Hong
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 30
中文關鍵詞: 圖片尺寸不變視覺分享
外文關鍵詞: Image Size Invariant, Visual Sharing
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於(k,n)門檻技術影像分享的實作有很多,而最常被使用的有1979年Shamir的多項式內插法以及1983年Asmuth和Bloom的中國餘式定理的方法,這兩種方法的重構都需要繁瑣複雜的計算,為了避免訊息還原所需的複雜運算,在1995年Naor和Shamir提出了一種將(k,n)門檻技術用在視覺分享上的技術,在此之後就有廣泛的研究關於視覺分享的實作。

    (k,n)視覺影像分享也是一個加密的技術,而它是將視覺訊息去產生n個陰影稱為分享的影像,然後還原的執行是藉由透明度的重疊,不需要採用任何運算的工作,然而為了實現完美的還原,導致分享的影像總是比原本的影像大,本論文研究了圖像尺寸不變的方法,雖然不能完美的還原,但在視覺上還可以接受。


    There are lots of implementations for image sharing based on (k,n) threshold techniques. The most frequently used ones are based on Shamir’s polynomial interpolation in 1979 and Asmuth and Bloom’s Chinese remainder theorem approach in 1983. The reconstruction of these two methods requires tedious complex computations. To avoid the complex computations for information recovery, Naor and Shamir proposed a (k,n) threshold technique for visual sharing in 1995, which have been widely studied in the implementations for visual image sharing afterwards.

    The (k,n) visual image sharing is also a cryptographic technique where visual information is used to generate n shadows called shared images and the reconstruction can be performed by transparency overlapping without adopting any computing effort. However, to achieve a perfect reconstruction, the size of shared images is usually much larger than the original ones. This thesis studies the image size invariant approaches with a visually acceptable recovery subject to an imperfect reconstruction.

    Chapter 1 Introduction 1 Chapter 2 Background Review 3 2.1 (k,n) visual secret sharing 3 2.1.1 Sharing part 5 2.1.2 Recovering part 7 2.2 Cases of generation methods of the matrices 8 2.2.1 Generation of two out of n 8 2.2.2 Generation of three out of n 9 2.2.3 Generation of n out of n 10 Chapter 3 Proposed Method 11 3.1 Image size invariant (k,n) visual secret sharing [Ito1999] 11 3.1.1 Sharing procedure 11 3.1.2 Recovering procedure 14 3.2 Example of new (k,n) visual secret sharing 14 3.2.1 Sharing procedure 14 3.2.2 Recovering procedure 15 Chapter 4 Experimental Results 16 4.1 Results 16 4.1.1 Successful results 16 4.1.2 Unrecognized results 21 4.1.3 Resized results 24 4.2 Summary 27 Chapter 5 Conclusion 28 References 29

    [Asmu1983] C. Asmuth and J. Bloom, “A Modular Approach to Key Safeguarding,” IEEE Trans. on Information Theory, Vol. 29, No. 2, 208-210, 1983.
    [Blak1979] G.R. Blakley, “Safeguarding cryptographic keys,” Proceedings of the National Computer Conference, American Federation of Information Proceeding Societies, Vol. 48, 313-317, 1979.
    [Ito1999] R. Ito, H. Kuwakado, and H. Tanaka, “Image Size Invariant Visual Cryptography,” IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, Vol. E82-A, No. 10, 481-494, 1999.
    [Kapo2014] D. Kapoor, S. Keshari, and S.K. Gaur, “An Overview of Visual Cryptography,” International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 4, No. 2, 103-110, 2014.
    [Luka2004] R. Lukac, K.N. Plataniotis, and A.N. Venetsanopoulos, “A {k,n}-Secret Sharing Scheme for Color Images," Computational Science – ICCS 2004, Vol. 3039, 72-79, 2004.
    [Moha2015] J. Mohan and R. Ramachandran, “Exploration of Color Visual Cryptography Schemes,” International Journal of Science and Research, Vol. 4, No. 7, 1033-1038, 2015.
    [Naor1995] M. Naor and A. Shamir, “Visual Cryptography,” Advances in Cryptology: Eurocrypt’94, Lecture Notes in Computer Science, Vol. 950, 1-12, 1995.
    [Sham1979] A. Shamir, “How to share a secret,” Communications of the ACM,
    Vol. 22, No. 11, 612-613, 1979.
    [Shai2016] R. Shaikh, S. Siddh, T. Ravekar, and S. Sugaonkar, “Visual Cryptography Survey,” Internation Journal of Computer Applications, Vol. 134, No. 2, 10-12, 2016.
    [Verh1997] E.R. Verheul, and H.C.A.V. Tilborg, “Constructions and Properties of k out of n Visual Secret Sharing Schemes,” Designs, Codes and Cryptography, Vol. 11, 179-196, 1997.
    [Web01] https://www.mathworks.com/matlabcentral/fileexchange/?term=id%3A24981, last access on May 20, 2017.

    [Web02] https://en.wikipedia.org/wiki/Otsu%27s_method, last access on May 20, 2017.
    [Web03] https://en.wikipedia.org/wiki/Visual_cryptography, last access on May 20, 2017.

    QR CODE