簡易檢索 / 詳目顯示

研究生: 陳維元
Chen, Wei-Yuan
論文名稱: 三種人工光源對植物生長的影響及其可能的植物賀爾蒙調控機制
Studies on the effects of three artificial light sources on plant growth and their possible regulations by phytohormones
指導教授: 徐邦達
Hsu, Ban-Dar
口試委員: 簡麗鳳
劉姿吟
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 189
中文關鍵詞: 人工光源發光二極體光生理發育阿拉伯芥綠豆即時定量聚合酶連鎖反應植物賀爾蒙
外文關鍵詞: artificial light, Light-Emitting Diodes (LEDs), photomorphology, Arabidopsis, mung bean (V. radiata), quantitative real-time polymerase chain reaction (qRT-PCR), phytohormones
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光如何影響植物的生長,是生物學家研究許久的一個問題;然而,仍有許多現象是無法被解釋清楚的。多數的研究著重在控制單一光源/單色光源做為變因,建立分子機制的模型,來描述其影響。但是以下兩點仍未被充分探討:(一)某些單色光(如綠光)對植物的影響;(二)在全光譜中使用不同波長的比例又會產生什麼影響。
    本研究使用三種不同的室內人造光源,與兩種植物:綠豆(V. radiata)和阿拉伯芥(A. thaliana,Col 0),利用相互比較的方法來了解不同成分的光譜對植物生理生長的影響。實驗從植物形態、生化指標到分子生物的層次,來瞭解其間的差異與成因。結果發現鹵素燈(HL)會使得綠豆與阿拉伯芥在發芽與早期發育期具有較高的生物量(biomass),生長情形較佳;但在中後期,鹵素燈下的阿拉伯芥的生物量就遠遠落後螢光燈管(FT)和紅/藍發光二極體(LED),不過會較早開花和具有較多花序頂(inflorescence apex)。這顯示不同階段的植物生長,對光會有不同的需求。鹵素燈擁有較多的紅外光,可能誘發植物的避蔭反應(shade avoidance response),及產生較高的葉溫是產生差異的可能原因。
    在生化檢測上,生長情形較佳的植物,如鹵素燈下的綠豆,或螢光燈管下30天以後的阿拉伯芥,會有較多營養物質累積(如碳水化合物),且它們的過氧化壓力指標-丙二醛(malonaldehyde)也比較低,顯示其承受的壓力較低,抑或是處理、適應的能力較佳。同時,葉綠素螢光(chlorophyll fluorescence,Fv/Fm)測量也呈現相似的結果:生長情況較佳的植物,所承受的逆境壓力較小。
    在分子層次上,選擇著重在植物賀爾蒙(phytohormones)生合成路徑上的基因;但發現這些基因的表現在三種光源之間並沒有太大差異。主要原因可能是賀爾蒙作用的位置仍較上游,並有互相調控的機制以維持恆定,因此較不會顯現差異。但仍有一些基因的表現可與生理生長建立關聯,例如參與生長素(auxin)合成最後一步的酵素AAO1(acetaldehyde oxidase 1)在五十天裡的時間點中都有很高的表現量,且在第十天和第四十天時達統計顯著;其扮演的角色可能在於調控植物的避蔭反應(shade avoidance response)。


    This study investigated the effects of three artificial light sources on the growth of plants. We used mung beans (V. radiate) and Arabidopsis (A. thaliana, Col 0) as model plants. To compare the effects of three light groups on the morphological, biochemical, and molecular alternation.
    The results showed that both the beans and Arabidopsis had more biomass at seedling stage when grown under halogen lamps (HL). However, at later stages, HL-Arabidopsis had the smallest biomass, far less than grown under fluorescence tubes (FT) and red/blue light-emitted diode (LED), and had more inflorescence apex and flowered earlier. The spectrum of HL contained more infar-red (FR), which will induce the shade avoidance response (SAR), and the lamp could generate higher leaf temperature, both may contribute to the major differences between HL and other light sources.
    Biochemical measurement agreed with the results of morphological examination. HL-mung beans and FT- Arabidopsis after 30 DAP (day after planted), have more carbohydrates accumulation (e.g. c), and showed lower concentration of MDA (malonaldehyde), which is an indicator for oxidative stress. These plants perhaps experienced less stress or had better ability to dealing with the stress. Chlorophyll fluorescence was resemble to draw the conclusion that those “healthy” plants were under less stress.
    At molecular level, we checked the expression of genes involved in the phytohormones biosynthesis pathway. The expression of these genes displayed not much difference across the three groups of light sources. The hormones are probably the signals at the upstream of their response, and a network-style of regulation tends to offset any perturbation to the system. However, the results can still provide some evidence for the involvement of hormone regulation. For example, AAO1 (acetaldehyde oxidase 1), an auxin related genes, which participates in the last step of auxin synthesis, was upregulated during plant growth, and was statistically significant at 10 and 40 DAP. It probably played a role of signaling in SAR.

    Content 摘 要 4 Abstract 6 List of Abbreviation 8 Chapter 1 Introduction 10 1. Plant Growth and Light Effects 10 1.1 Monochromic Light Effects on Plant, and Its Receptor 10 1.2 Light Septum Effect on Plant 12 2. Consideration of Applications on Plant Factory 14 3. Plant Hormones Synthesis and Plant Physiology 16 3.1 Auxin 16 3.2 Cytokinin 18 3.3 Gibberellin 19 3.4 Abscisic Acid 21 3.5 Ethylene 22 3.6 Brassinosteroid 24 3.7 Jasmonic Acid 25 3.8 Salicylic Acid 27 Chapter 2 Material and Method 29 1. Light Construction 29 2. Natural Sunlight Measurement 30 3. Leaf Temperature 30 4. Plant Growth 30 5. Plant Morphological Measurement 31 5.1 Sample collection 31 5.2 Fresh weight/ dry weight and the respective weights of plants 31 5.3 Leaf area 32 5.4 Stem length 32 6. Nutrition Analysis 32 7. Chlorophyll Quantification and Chlorophyll Fluorescence 33 7.1 Sample collection 33 7.2 Chlorophyll Quantification 33 7.3 Fv/Fm 34 8. Oxidative Stress Analysis 34 9. RNA-Extraction and Quality Control 35 10. qRT-PCR and Analysis 35 11. Statistical Analysis 36 Chapter 3 Result 37 1 The Spectral Patterns of light sources 37 1.1 Experimental/Artificial Lights 37 1.2 Natural Sunlight 38 2 Leaf Temperature 39 3 Plant Morphology 40 3.1 Mung bean 40 3.2 Arabodopsis 40 4 Nutrition Status 42 4.1 Mung bean 42 4.2 Arabidopsis 43 5 Chlorophyll Quantification and Chlorophyll Fluorescence 43 6 Oxidative Stress Assay 44 7 Phytohormone Related Genes Expression 45 Chapter 4 Discussion 48 1. Light Spectrum 48 2. Leaf Temperature 49 3. Morphology 50 4. Nutrition State 53 5. Chlorophyll Quantification and Fluorescence 55 6. Oxidative Stress Assay 57 7. Phytohormones Expression 60 7.1 Auxin related genes 61 7.2 Cytokinin related genes 63 7.3 Gibberellin related genes 64 7.4 Abscisic acid related genes 66 7.5 Ethylene related genes 66 7.6 Brassinosteroid related genes 68 7.7 Jasmonic acid related genes 69 7.8 Salicylic acid related genes 70 Chapter 5 Conclusion 71 Chapter 6 Future Perspective 74 Reference 76 Figure 86 Table 176 AppendixⅠ 183 AppendixⅡ 185 AppendixⅢ 187 AppendixⅣ 188

    Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., . . . Harberd, N. P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi: 10.1126/science.1118642
    Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S. R., & Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171(3), 382-388. doi: http://dx.doi.org/10.1016/j.plantsci.2006.04.009
    Baron, K. N., Schroeder, D. F., & Stasolla, C. (2012). Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci, 188-189, 48-59. doi: 10.1016/j.plantsci.2012.03.001
    Barrero, J. M., Piqueras, P., González-Guzmán, M., Serrano, R., Rodríguez, P. L., Ponce, M. R., & Micol, J. L. (2005). A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany, 56(418), 2071-2083. doi: 10.1093/jxb/eri206
    Bleecker, A. B., & Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol, 16, 1-18. doi: 10.1146/annurev.cellbio.16.1.1
    Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. Febs j, 277(9), 2022-2037. doi: 10.1111/j.1742-4658.2010.07633.x
    Carabelli, M., Possenti, M., Sessa, G., Ciolfi, A., Sassi, M., Morelli, G., & Ruberti, I. (2007). Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev, 21(15), 1863-1868. doi: 10.1101/gad.432607
    Cashmore, A. R., Jarillo, J. A., Wu, Y. J., & Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science, 284(5415), 760-765.
    Chinnusamy, V., Gong, Z., & Zhu, J. K. (2008). Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol, 50(10), 1187-1195. doi: 10.1111/j.1744-7909.2008.00727.x
    Chitwood, D. H., Headland, L. R., Ranjan, A., Martinez, C. C., Braybrook, S. A., Koenig, D. P., . . . Sinha, N. R. (2012). Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning. Plant Cell, 24(6), 2318-2327. doi: 10.1105/tpc.112.098798
    Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav, 8(4), e23681. doi: 10.4161/psb.23681
    Christie, J. M. (2007). Phototropin blue-light receptors. Annu Rev Plant Biol, 58, 21-45. doi: 10.1146/annurev.arplant.58.032806.103951
    Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A., & Harmer, S. L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol, 9(8), R130. doi: 10.1186/gb-2008-9-8-r130
    Cui, M., Lin, Y., Zu, Y., Efferth, T., Li, D., & Tang, Z. (2015). Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. Journal of Plant Biology, 58(3), 193-201. doi: 10.1007/s12374-014-0302-z
    Curaba, J., Moritz, T., Blervaque, R., Parcy, F., Raz, V., Herzog, M., & Vachon, G. (2004). AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol, 136(3), 3660-3669. doi: 10.1104/pp.104.047266
    Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic Acid biosynthesis and metabolism. Arabidopsis Book, 9, e0156. doi: 10.1199/tab.0156
    Dhingra, A., Bies, D. H., Lehner, K. R., & Folta, K. M. (2006). Green Light Adjusts the Plastid Transcriptome during Early Photomorphogenic Development. Plant Physiol, 142(3), 1256-1266. doi: 10.1104/pp.106.088351
    Dong, Z., Yu, Y., Li, S., Wang, J., Tang, S., & Huang, R. (2015). Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis. Mol Plant. doi: 10.1016/j.molp.2015.09.007
    Endo, M., Tanigawa, Y., Murakami, T., Araki, T., & Nagatani, A. (2013). PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences, 110(44), 18017-18022. doi: 10.1073/pnas.1310631110
    Finkelstein, R. (2013). Abscisic Acid synthesis and response. Arabidopsis Book, 11, e0166. doi: 10.1199/tab.0166
    Frebort, I., Kowalska, M., Hluska, T., Frebortova, J., & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. J Exp Bot, 62(8), 2431-2452. doi: 10.1093/jxb/err004
    Gallego-Bartolome, J., Alabadi, D., & Blazquez, M. A. (2011). DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS One, 6(8), e23918. doi: 10.1371/journal.pone.0023918
    Garcion, C., Lohmann, A., Lamodiere, E., Catinot, J., Buchala, A., Doermann, P., & Metraux, J. P. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol, 147(3), 1279-1287. doi: 10.1104/pp.108.119420
    Gawronski, P., Gorecka, M., Bederska, M., Rusaczonek, A., Slesak, I., Kruk, J., & Karpinski, S. (2013). Isochorismate synthase 1 is required for thylakoid organization, optimal plastoquinone redox status, and state transitions in Arabidopsis thaliana. J Exp Bot, 64(12), 3669-3679. doi: 10.1093/jxb/ert203
    Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 130(3), 1319-1334. doi: 10.1104/pp.011254
    Gonzalez, N., Vanhaeren, H., & Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci, 17(6), 332-340. doi: http://dx.doi.org/10.1016/j.tplants.2012.02.003
    Han, Y., Zhang, C., Yang, H., & Jiao, Y. (2014). Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proceedings of the National Academy of Sciences, 111(18), 6840-6845.
    He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology, 128(3), 876-884. doi: 10.1104/pp.010843
    He, Y., & Gan, S. (2001). Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant molecular biology, 47(5), 595-605.
    Hedden, P., & Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochem J, 444(1), 11-25. doi: 10.1042/BJ20120245
    Hogewoning, S. W., Douwstra, P., Trouwborst, G., van Ieperen, W., & Harbinson, J. (2010). An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J Exp Bot, 61(5), 1267-1276. doi: 10.1093/jxb/erq005
    Hornitschek, P., Kohnen, M. V., Lorrain, S., Rougemont, J., Ljung, K., López-Vidriero, I., . . . Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal, 71(5), 699-711. doi: 10.1111/j.1365-313X.2012.05033.x
    Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., . . . Chen, Z. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 153(4), 1526-1538. doi: 10.1104/pp.110.157370
    Jiang, M., & Zhang, J. (2001). Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. Plant and Cell Physiology, 42(11), 1265-1273. doi: 10.1093/pcp/pce162
    Jones, B., Gunneras, S. A., Petersson, S. V., Tarkowski, P., Graham, N., May, S., . . . Ljung, K. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell, 22(9), 2956-2969. doi: 10.1105/tpc.110.074856
    Karami, O., Deljou, A., Esna-Ashari, M., & Ostad-Ahmadi, P. (2006). Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Scientia Horticulturae, 110(4), 340-344. doi: http://dx.doi.org/10.1016/j.scienta.2006.07.029
    Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci, 20(4), 219-229. doi: http://dx.doi.org/10.1016/j.tplants.2015.02.001
    Kiyohara, S., Honda, H., Shimizu, N., Ejima, C., Hamasaki, R., & Sawa, S. (2014). Tryptophan auxotroph mutants suppress thesuperroot2phenotypes, modulating IAA biosynthesis inArabidopsis. Plant Signaling & Behavior, 6(9), 1351-1355. doi: 10.4161/psb.6.9.16321
    Koch, K. E. (1996). CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol, 47, 509-540. doi: 10.1146/annurev.arplant.47.1.509
    Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., & Pieterse, C. M. (2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol, 147(3), 1358-1368. doi: 10.1104/pp.108.121392
    Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., . . . Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445(7128), 652-655.
    Kuroha, T., & Sakakibara, H. (2013). Method for increasing plant biomass by controlling active cytokinin expression level: Google Patents.
    Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., . . . Sakakibara, H. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell, 21(10), 3152-3169. doi: 10.1105/tpc.109.068676
    Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128(2), 682-695.
    Leone, M., Keller, M. M., Cerrudo, I., & Ballaré, C. L. (2014). To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytologist, 204(2), 355-367. doi: 10.1111/nph.12971
    Lin, C. (2000). Plant blue-light receptors. Trends Plant Sci, 5(8), 337-342.
    Liu, H., Wang, Y., Xu, J., Su, T., Liu, G., & Ren, D. (2008). Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Res, 18(3), 422-432. doi: 10.1038/cr.2008.29
    Mano, Y., & Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. J Exp Bot, 63(8), 2853-2872. doi: 10.1093/jxb/ers091
    Marcos, R., Izquierdo, Y., Vellosillo, T., Kulasekaran, S., Cascón, T., Hamberg, M., & Castresana, C. (2015). 9-Lipoxygenase-derived oxylipins activate brassinosteroid signaling to promote cell wall-based defense and limit pathogen infection. Plant Physiology, pp.00992.02015. doi: 10.1104/pp.15.00992
    Martínez-García, J. F., Galstyan, A., Salla-Martret, M., Cifuentes-Esquivel, N., Gallemí, M., & Bou-Torrent, J. (2010). Regulatory Components of Shade Avoidance Syndrome. In K. Jean-Claude & D. Michel (Eds.), Advances in Botanical Research (Vol. Volume 53, pp. 65-116): Academic Press.
    Maruta, T., Noshi, M., Nakamura, M., Matsuda, S., Tamoi, M., Ishikawa, T., & Shigeoka, S. (2014). Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Plant Sci, 219-220, 61-68. doi: 10.1016/j.plantsci.2014.01.003
    Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., . . . Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18512-18517. doi: 10.1073/pnas.1108434108
    Mathews, S. (2006). Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol, 15(12), 3483-3503. doi: 10.1111/j.1365-294X.2006.03051.x
    Meinen, E., van Ieperen, W., Hogewoning, S., & Trouwborst, G. (2012). Finding the optimal growth-light spectrum for greenhouse crops. Paper presented at the VII International Symposium on Light in Horticultural Systems 956.
    Meng, Y., Li, H., Wang, Q., Liu, B., & Lin, C. (2013). Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 25(11), 4405-4420. doi: 10.1105/tpc.113.116590
    Michael, T. P., Breton, G., Hazen, S. P., Priest, H., Mockler, T. C., Kay, S. A., & Chory, J. (2008). A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol, 6(9), e225. doi: 10.1371/journal.pbio.0060225
    Mitchum, M. G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., . . . Sun, T. P. (2006). Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 45(5), 804-818. doi: 10.1111/j.1365-313X.2005.02642.x
    Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci, 5, 4. doi: 10.3389/fpls.2014.00004
    Nambara, E., & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 56, 165-185. doi: 10.1146/annurev.arplant.56.032604.144046
    Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol, 147(3), 1251-1263. doi: 10.1104/pp.108.122465
    Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N., & Mizuno, T. (2012). A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol, 53(11), 1965-1973. doi: 10.1093/pcp/pcs141
    Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem, 280(18), 17873-17879. doi: 10.1074/jbc.M414592200
    Ogawa, M. (2003). Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination. The Plant Cell Online, 15(7), 1591-1604. doi: 10.1105/tpc.011650
    Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 181(3), 219-229. doi: 10.1016/j.plantsci.2011.05.009
    Piofczyk, T., Jeena, G., & Pecinka, A. (2015). Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. Plant Physiol Biochem, 93, 34-43. doi: 10.1016/j.plaphy.2015.01.011
    Rock, C. D., & Zeevaart, J. A. (1991). The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A, 88(17), 7496-7499.
    Ruberti, I., Sessa, G., Ciolfi, A., Possenti, M., Carabelli, M., & Morelli, G. (2012). Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnology Advances, 30(5), 1047-1058. doi: http://dx.doi.org/10.1016/j.biotechadv.2011.08.014
    Sairanen, I., Novak, O., Pencik, A., Ikeda, Y., Jones, B., Sandberg, G., & Ljung, K. (2012). Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell, 24(12), 4907-4916. doi: 10.1105/tpc.112.104794
    Sano, S., Aoyama, M., Nakai, K., Shimotani, K., Yamasaki, K., Sato, M. H., . . . Shiina, T. (2014). Light-dependent expression of flg22-induced defense genes in Arabidopsis. Front Plant Sci, 5, 531. doi: 10.3389/fpls.2014.00531
    Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., . . . Masuda, T. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. Dna Research, 8(4), 153-161.
    Schroder, F., Lisso, J., Obata, T., Erban, A., Maximova, E., Giavalisco, P., . . . Mussig, C. (2014). Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biol, 14, 309. doi: 10.1186/s12870-014-0309-0
    Sellaro, R., Crepy, M., Trupkin, S. A., Karayekov, E., Buchovsky, A. S., Rossi, C., & Casal, J. J. (2010). Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol, 154(1), 401-409. doi: 10.1104/pp.110.160820
    Sellaro, R., Yanovsky, M. J., & Casal, J. J. (2011). Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis. The Plant Journal, 68(5), 919-928. doi: 10.1111/j.1365-313X.2011.04745.x
    Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., . . . Nambara, E. (2006). Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J, 48(3), 354-366. doi: 10.1111/j.1365-313X.2006.02881.x
    Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y., & Koshiba, T. (2000). Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J, 23(4), 481-488.
    Seo, M., Peeters, A. J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J. A., . . . Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A, 97(23), 12908-12913. doi: 10.1073/pnas.220426197
    Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., & Yoshida, S. (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol, 131(1), 287-297. doi: 10.1104/pp.013029
    Smith, H. (2000). Phytochromes and light signal perception by plants---an emerging synthesis. Nature, 407(6804), 585-591.
    Stavang, J. A., Gallego-Bartolome, J., Gomez, M. D., Yoshida, S., Asami, T., Olsen, J. E., . . . Blazquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J, 60(4), 589-601. doi: 10.1111/j.1365-313X.2009.03983.x
    Stepanova, A. N., Yun, J., Robles, L. M., Novak, O., He, W., Guo, H., . . . Alonso, J. M. (2011). The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell, 23(11), 3961-3973. doi: 10.1105/tpc.111.088047
    Sun, J., Nishio, J. N., & Vogelmann, T. C. (1998). Green light drives CO2 fixation deep within leaves. Plant and Cell Physiology, 39(10), 1020-1026.
    Swain, S. M., Singh, D. P., Helliwell, C. A., & Poole, A. T. (2005). Plants with increased expression of ent-kaurene oxidase are resistant to chemical inhibitors of this gibberellin biosynthesis enzyme. Plant Cell Physiol, 46(2), 284-291. doi: 10.1093/pcp/pci027
    Tardy, F., & Havaux, M. (1996). Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthindashaccumulating mutant of Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology, 34(1), 87-94. doi: http://dx.doi.org/10.1016/1011-1344(95)07272-1
    Thain, S. C., Vandenbussche, F., Laarhoven, L. J. J., Dowson-Day, M. J., Wang, Z. Y., Tobin, E. M., . . . Van Der Straeten, D. (2004). Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiol, 136(3), 3751-3761. doi: 10.1104/pp.104.042523
    Tilbrook, K., Arongaus, A. B., Binkert, M., Heijde, M., Yin, R., & Ulm, R. (2013). The UVR8 UV-B Photoreceptor: Perception, Signaling and Response. Arabidopsis Book, 11, e0164. doi: 10.1199/tab.0164
    Tokunaga, H., Kojima, M., Kuroha, T., Ishida, T., Sugimoto, K., Kiba, T., & Sakakibara, H. (2012). Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J, 69(2), 355-365. doi: 10.1111/j.1365-313X.2011.04795.x
    Van Ieperen, W. (2012). Plant morphological and developmental responses to light quality in a horticultural context. Paper presented at the VII International Symposium on Light in Horticultural Systems 956.
    Vandenbussche, F., Vriezen, W. H., Smalle, J., Laarhoven, L. J., Harren, F. J., & Van Der Straeten, D. (2003). Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol, 133(2), 517-527. doi: 10.1104/pp.103.022665
    Wang, X., & Iino, M. (1998). Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts. Plant Physiol, 117(4), 1265-1279.
    Wang, Y., & Folta, K. M. (2013). Contributions of green light to plant growth and development. Am J Bot, 100(1), 70-78. doi: 10.3732/ajb.1200354
    Warpeha, K. M., & Kaufman, L. S. (1990). Two distinct blue-light responses regulate epicotyl elongation in pea. Plant Physiology, 92(2), 495-499.
    Wasternack, C., & Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111(6), 1021-1058. doi: 10.1093/aob/mct067
    Weber, H., Chételat, A., Reymond, P., & Farmer, E. E. (2004). Selective and powerful stress gene expression inArabidopsisin response to malondialdehyde. The Plant Journal, 37(6), 877-888. doi: 10.1111/j.1365-313X.2003.02013.x
    Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmülling, T. (2003). Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. The Plant Cell, 15(11), 2532-2550. doi: 10.1105/tpc.014928
    Yamaguchi, S., Smith, M. W., Brown, R. G., Kamiya, Y., & Sun, T. (1998). Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell, 10(12), 2115-2126.
    Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. (2013). Review: role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40(4), 2837-2849. doi: 10.1007/s11033-012-2299-z
    Zentella, R., Zhang, Z. L., Park, M., Thomas, S. G., Endo, A., Murase, K., . . . Sun, T. P. (2007). Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell, 19(10), 3037-3057. doi: 10.1105/tpc.107.054999
    Zhao, B., & Li, J. (2012). Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol, 54(10), 746-759. doi: 10.1111/j.1744-7909.2012.01168.x
    方煒(2012)。台灣植物工廠發展現況與展望, 精密設施工程與植物工場實用化技術研討會專輯。
    王自存、梁穎芝、梁淑惠、鄧國同與黃錦杰(2005)。短波紫外線 (UV-C) 照射處理技術在園產品保鮮之應。園產品採後處理技術之研究與應用研討會專刊:,頁 233-241。
    朱培昇(2009)。培養環境對細本山葡萄(Vitis thunbergii Sieb. et Zucc.)細胞生產二次代謝物之影響。大同大學生化工程與生醫工程。
    何佳勳、楊純明與蕭巧玲(2012)。特定波段光輻射對不同栽培種菊花開花及花朵品質之差別效應。作物、環境與生物資訊, 9(4),頁 265-277。
    高德錚(2014)。蔬菜植物工廠發展現況。臺中區農業改良場特刊(122),頁 195-202。
    康世緯、方煒. (2015). 以模型分析綠光與黃橙光對波士頓萵苣鮮重之影響. 臺灣園藝, 61(2), 105-114.
    許謙信、饒瑞佶與方煒(2004)。菊花電照省電方式之研究: 不同光質省電燈泡電照抑制開花作用。臺中區農業改良場研究彙報(85),頁 1-12。
    陳令錫(2012)。光線量測與植物生長。臺中區農業改良場特刊(111),頁 64-71。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE