簡易檢索 / 詳目顯示

研究生: 謝賢德
Hsieh, Hsien-Te
論文名稱: 以超臨界二氧化碳輔助分散銀粒子及以異硬脂酸金屬鹽為前趨物應用濕式化學法製備奈米銀及奈米硫化金屬之研究
Deaggregation of Silver Powders Assisted by Supercritical CO2, Synthesis of Silver Nanoparticles and Metal Sulfide Nanocrystals by Wet-Chemical Method Using Metal Isostearate as Precursor
指導教授: 金惟國
Chin, Wei-Kuo
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 167
中文關鍵詞: 超臨界二氧化碳二氧化碳膨脹液體奈米銀奈米硫化金屬
外文關鍵詞: supercritical CO2, CO2-expanded liquids, silver nanoparticle, metal sulfide nanocrystal
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為發展製備奈米材料之技術,包括(一)超臨界二氧化碳輔助分散銀粒子、(二)二氧化碳膨脹液體法製備奈米銀粒子及(三)以異硬脂酸金屬鹽為前趨物製備奈米硫化金屬等三部分,其研究內容之摘要分述如下:

    一、超臨界二氧化碳輔助分散銀粒子
    將盛有銀粒子/有機溶劑/分散劑溶液之高壓反應器以二氧化碳建壓至800 ~ 2000 psi,經所需時間後,再進行快速洩壓程序,探討銀粒子聚集體之解團聚現象。其中,有機溶劑之選擇為toluene、hexane及ethyl acetate,分散劑之選擇為isostearic acid及dodecanethiol,操作溫度為25~50°C,並藉由動態雷射光散射儀鑑定產物之平均粒徑。
    經超臨界二氧化碳輔助分散程序後,銀粒子之平均粒徑約為1000 nm左右或更小。若採用ethyl acetate溶劑及isostearic acid分散劑時,對銀粒子聚集體之解團聚效果最佳,其平均粒徑約為500 nm。不過,收集的銀粒子溶液會在收集瓶內壁及溶液表面形成薄膜狀之聚集體,且有部分銀粒子聚集沈澱。推究其原因,應為二氧化碳之反溶劑效應,或為分散劑濃度不足提供銀粒子表面吸附之所需。此外,在快速洩壓過程時,二氧化碳之體積大幅膨脹導致溶劑產生霧化,僅能收集少許的產物。因此,必須採用超大體積容器方可收集大部分產物,故為此方法之缺點。
    二、二氧化碳膨脹液體法製備奈米銀粒子
    以異硬脂酸鈉鹽與硝酸銀進行陽離子交換反應,合成異硬脂酸銀鹽(AgISt)之新型銀前趨物。經ATR-FTIR、1H-NMR、XRD、DSC及TGA分析,結果顯示分支行烷鏈具有立體障礙效應,進而阻礙AgISt生成規則排列之層狀結構,故於有機溶劑中具有較高的溶解度。本研究提出具創新性的方法,以AgISt作為前趨物,氫氣作為還原劑,二氧化碳膨脹液體作為反應媒介,製備奈米銀粒子。其中,氫氣及二氧化碳之操作壓力分別為14 ~ 800 psi及200 ~ 800 psi。
    反應溫度為40°C時,可製備粒徑為2 ~ 7 nm之奈米銀粒子。提高氫氣及二氧化碳之壓力時,奈米銀粒子之粒徑分佈變小且生成速率會增加。經HRTEM、SAED及ATR-FTIR分析,結果顯示奈米銀粒子具有面心立方之晶體結構,且表面吸附異硬脂酸,使其能穩定分散於溶劑中。提升反應溫度至60及80°C,奈米銀粒子之粒徑分佈變大且生成速率趨緩,推究其原因為溶液的體積膨脹度減少,以致氫氣的質傳阻力增加所導致。
    三、以異硬脂酸金屬鹽為前趨物製備奈米硫化金屬材料
    以異硬脂酸鈉鹽分別與硫酸鋅、醋酸鎘及氯化銅進行質子交換反應,合成異硬脂酸鋅鹽(ZnISt2)、鎘鹽(CdISt2)及銅鹽(CuISt2)。經XRD及DSC分析,結果顯示ZnISt2、CdISt2及CuISt2不具規則排列之層狀結構,故於有機溶劑中具有較高的溶解度,可作金屬前趨物,與硫化氫進行硫化反應,以濕式化學法製備奈米硫化鋅、硫化鎘及硫化銅材料。以ZnISt2作為前趨物,在40~120°C反應溫度下,可生成硫化鋅奈米線;在160°C下,可生成硫化鋅奈米棒。以CdISt2作為前趨物,在40~120°C下,可生成不同尺寸之一維奈米棒、bipod、tripod及tetrapod等型態之硫化鎘奈米棒。經HRTEM分析,顯示硫化鎘奈米棒及支架型奈米棒中心轉折點,分別屬於六角晶系之纖鋅結構及立方晶系之閃鋅結構。提高溫度至160°C,可生成類球狀粒子、長徑比較小的一維奈米棒及少部分的蟲型奈米棒。以CuISt2作為前趨物,在40°C下,會生成不規則型態之硫化銅聚集體;在80~160°C下會生成圓形碟狀、三角形及六角形型態之奈米硫化銅。經XRD圖譜分析,結果顯示奈米硫化銅具有六方晶系之結構(CuS, covellite)。


    The main purpose of this study was to develop the techniques of the preparation of nanocrystals. In this dissertation, three techniques including (I) the deaggregation of silver powders assisted by supercritical CO2, (II) the synthesis of silver nanoparticles in CO2-expanded liquids, and (III) the synthesis of metal sulfide nanocrystals using wet-chemical method had been studied.

    System I. The deaggregation of silver powders assisted by supercritical CO2
    The mixture of silver particles/organic solvent/dispersing agent in the reactor was pressurized with CO2 ranging from 800 to 2000 psi for a period of time, followed by the depressurization through a nozzle rapidly. The organic solvents of toluene, hexane and ethyl acetate and the dispersing agents of isostearic acid and dodecanethiol were used. The process temperature was ranged from 25 to 50°C. After the process of depressurization, the silver particles solution was investigated by dynamic laser scattering (DLS).
    It was found that the operation with the pressurized CO2, especially in the supercritical condition, could help the deaggregation of silver powders and the size of deaggregated silver particles was less than 1000 nm. However, part of the deaggregated silver particles tended to assemble into thin films on the surface of solution and the wall of receiver. The anti-solvent effect induced by adding CO2 or insufficient amount of dispersing agent to cap the surface of silver particles might be the reasons. In addition, during depressurization through nozzle, the volume of gas expanded greatly leading to the nebulization of organic solvent. Thus, the huge receiver to collect the nebulizing solvent droplets was required.

    System II. The synthesis of silver nanoparticles in CO2-expanded liquids
    A soluble form of silver carboxylate, silver isostearate (AgISt), was synthesized and characterized. The results of ATR-FTIR, 1H-NMR, XRD, DSC and TGA indicated that the methylated branched alky chains in AgISt exhibited a steric hindrance to impede the growth of layered structure of AgISt molecules, which led to the high solubility of AgISt in non-polar solvents. A novel technique to synthesize silver nanoparticles (AgNPs) using CO2-expanded liquids as the processing medium was proposed. AgISt and hydrogen (H2) were utilized as silver precursor and reducing agent, respectively. The operative pressure of H2 and CO2 were ranged from 14 to 800 psi and from 200 to 800 psi, respectively.
    At 40°C, the averaged size of synthesized AgNPs was ranged from 2 to 7 nm. While the applied pressures of H2 and CO2 were increased, the size distribution of AgNPs was narrower and the formation rate of AgNPs was increased. The investigations of HRTEM, SAED, ATR-FTIR showed that AgNPs were grown in face-centered cubic phase and capped with isostearic acid, which was derived from the reduction of AgISt with H2. Further increase the reaction temperature to 60 or 80°C, the formation rate of AgNPs was reduced and the size distribution of AgNPs became broader. The reason might be that the resistance of mass transfer of H2 in CO2-expanded liquids limited the reduction reaction of AgISt and H2 as temperature was increased.

    System III. The synthesis of metal sulfide nanocrystals using wet-chemical method
    Metal isostearates including zinc isostearate (ZnISt2), cadmium isostearate (CdISt2), and copper isostearate (CuISt2) were synthesized by the cation exchange reaction of sodium isostearate with the corresponding metal ions. The results of XRD and DSC indicated that no layered structure was form in metal isostearate, which led to their high solubility in non-polar solvents. Metal isostearates were employed as precursors to react with H2S to synthesis metal sulfide nanocrystals in wet-chemical method. By using ZnISt2 as precursor, ZnS nanowires were formed at 40~120°C, whereas nanorods were formed at 160°C. By using CdISt2 as precursor, rod, bipod, tripod, and tetrapod shapes of CdS nanocrystals were formed at 40~120°C. The investigation of HRTEM indicated that the arms and cores of multipod-shaped CdS were grown in wurtzite phase and zinc blende phase, respectively. Further increased the temperature to 160°C, spherical, rod-like and warm-like CdS nanocrystals were formed. By using CuISt2 as precursor, irregular aggregated CuS were form at 40°C, whereas circular, triangular, and hexagonal CuS nanocrystals were form at 80~160°C. The XRD pattern indicated that CuS nanocrystals were grown in covellite phase.

    摘要 I Abstract III 謝誌 VI 目錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 第二章 文獻回顧 4 2-1 超臨界流體之概述 4 2-1-1 超臨界二氧化碳之溶劑特性 7 2-1-2 二氧化碳膨潤液體 10 2-2 奈米半導體材料之簡介 17 2-2-1 奈米材料之成核成長機制 19 2-2-2 以濕式化學法製備零維奈米材料 20 2-2-3 以濕式化學法製備非等向性奈米材料 21 2-3 參考文獻 26 第三章 研究動機與目的 31 第四章 實驗材料與儀器設備 32 4-1 實驗材料 32 4-2 儀器設備 34 第五章 超臨界二氧化碳輔助分散銀粒子 36 5-1 前言 36 5-2 文獻回顧 37 5-2-1 奈米材料之解團聚機制與分散設備 37 5-2-2 超臨界二氧化碳輔助分散奈米材料 42 5-3 實驗方法 46 5-3-1 實驗藥品 46 5-3-2 實驗裝置 47 5-3-3 實驗步驟 49 5-4 結果與討論 50 5-4-1 以超音波法分散奈米銀粒子 50 5-4-2 超臨界二氧化碳輔助分散銀粒子 55 5-4-3 銀粒子產物之型態觀察 60 5-5 結論 62 5-6 參考文獻 63 第六章 二氧化碳膨脹液體法製備奈米銀粒子 67 6-1 前言 67 6-2 文獻回顧 68 6-2-1 單相濕式化學法 68 6-2-2 利用超臨界二氧化碳合成奈米粒子 70 6-2-3 二氧化碳膨脹液體之技術與應用 72 6-2-4 於二氧化碳膨脹液體中製備奈米銀粒子 73 6-3實驗方法 74 6-3-1 實驗藥品 74 6-3-2 合成異硬脂酸銀鹽(AgISt)及硬脂酸銀鹽(AgSt) 75 6-3-3 濕式化學還原法之反應裝置與設備 75 6-3-4 濕式化學還原法製備奈米銀粒子(AgNPs):氫氣(H2)/異硬脂酸銀鹽(AgISt)/正庚烷之系統 75 6-3-5二氧化碳膨脹液體法製備奈米銀粒子(AgNPs):氫氣(H2)/二氧化碳(CO2)/異硬脂酸銀鹽(AgISt)/異硬脂酸(Isostearic acid)/正庚烷之系統 76 6-3-6 實驗設備 77 6-4 結果與討論 79 6-4-1 異硬脂酸(Isostearic acid)及異硬脂酸銀鹽(AgISt)之1H-NMR及ATR-FTIR分析 79 6-4-2 硬脂酸銀鹽(AgSt)及異硬脂酸銀鹽(AgISt)之XRD分析 83 6-4-3 硬脂酸銀鹽(AgSt)及異硬脂酸銀鹽(AgISt)之熱分析 85 6-4-4 濕式化學還原法製備奈米銀粒子(AgNPs):氫氣(H2)/異硬脂酸銀鹽(AgISt)/正庚烷(heptane)之系統 87 6-4-5 二氧化碳膨脹液體法製備奈米銀粒子(AgNPs):氫氣(H2)/二氧化碳(CO2)/異硬脂酸銀鹽(AgISt)/正庚烷(heptane)之系統 89 6-4-5-1二氧化碳壓力對奈米銀粒子生成速率之效應 89 6-4-5-2氫氣壓力對於奈米銀粒子生成速率之效應 92 6-4-5-3 AgISt濃度對奈米銀粒子生成型態之影響 97 6-4-5-4添加異硬脂酸(Isostearic acid)對奈米銀粒子生成型態之影響 99 6-4-5-5溫度對奈米銀粒子生成型態之影響 100 6-5 結論 104 6-6 參考文獻 105 第七章 以異硬脂酸金屬鹽為前趨物製備奈米硫化金屬材料 112 7-1 前言 112 7-2 文獻回顧 113 7-2-1單源前趨物應用於固相法製備奈米硫化金屬材料 113 7-2-2單源前趨物應用於液相法製備奈米硫化金屬材料 116 7-2-3不同硫源應用於液相法製備奈米硫化金屬材料 120 7-3 實驗方法 125 7-3-1 實驗藥品 125 7-3-2 異硬脂酸金屬鹽(ZnISt2、CdISt2及CuISt2)及硬脂酸金屬鹽(ZnSt2、CdSt2及CuSt2)之合成 126 7-3-3 反應裝置 126 7-3-4濕式化學法製備奈米硫化鋅、硫化鎘及硫化銅材料 126 7-4 結果與討論 131 7-4-1 硬脂酸及異硬脂酸鋅鹽、鎘鹽及銅鹽(ZnSt2、CdSt2、CuSt2、ZnISt2、CdISt2、CuISt2)之ATR-FTIR 及1H-NMR分析 131 7-4-2 硬脂酸及異硬脂酸鋅鹽、鎘鹽及銅鹽(ZnSt2、CdSt2、CuSt2、ZnISt2、CdISt2、CuISt2)之XRD及DSC分析 136 7-4-3 硫化鋅、硫化鎘及硫化銅之型態及特性 139 7-4-3-1 硫化鋅之型態及特性 139 7-4-3-2 硫化鎘之型態及特性 143 7-4-3-3 硫化銅之型態及特性 151 7-5 結論 158 7-6 參考文獻 159 第八章 總結 163 作者簡歷 166 表目錄 表2-1. 液體、超臨界流體及氣體之物理性質。 5 表2-2. 使用二氧化碳作為溶劑之優點。 6 表2-3. 使用二氧化碳膨脹液體作為反應媒介之優點。 14 表5-1. 以超臨界二氧化碳輔助分散銀粒子之實驗操作條件。 55 表6-1. 合成奈米金屬材料之相關文獻。 70 表6-2. 二氧化碳膨脹液體法製備奈米銀粒子之操作條件及結果(反應溫度= 40°C,反應時間= 30 min)。 78 表7-1. 以單源前趨物製備奈米硫化金屬材料之相關文獻。 119 表7-2. 額外添加硫源製備奈米硫化金屬材料之相關文獻。 123 表7-3. 表7-2中使用之溶劑(coordinating solvent)及其簡稱。124 表7-4. 奈米硫化鋅材料之代號及其製備條件,其中[ZnISt2] = 10 mM 且VH2S = 10 ml。 128 表7-5. 奈米硫化鎘材料之代號及其製備條件,其中[ZnISt2] = 10 mM 且VH2S = 10 ml。 129 表7-6. 奈米硫化銅材料之代號及其製備條件,其中[ZnISt2] = 10 mM 且VH2S = 10 ml。 130 表7-7. 硬脂酸、硬酸金屬鹽、異硬脂酸及異硬脂酸金屬鹽於ATR-FTIR圖譜中對應之振動形式及其波數。 134 圖目錄 圖 2-1. 純物質之壓力-溫度相圖,顯示固相、液相、氣相、三相點、臨界點及超臨界流體區域。 5 圖 2-2. 碳氫化合物、三氟甲烷、氙、二氧化碳、氯化氫、氨及甲醇等流體之超臨界條件。 6 圖 2-3. (a)超臨界二氧化碳之密度及溶解力(Hildebrand parameter)於不同溫度及壓力條件下之變化。(b)超臨界水(400°C, Tr=1.04)、三氟甲烷(30°C, Tr=1.01)及二氧化碳(40°C, Tr=1.03)之介電常數於不同壓力條件下之變化。. 8 圖 2-4. (a)水及(b)二氧化碳之化學結構與電荷分離示意圖。 9 圖 2-5. 二氧化碳分子與羧基分子間產生(a)路易士酸鹼作用力及(b)氫鍵作用力。 9 圖 2-6. 二氧化碳分子與甲烷、一氟甲烷、二氟甲烷、三氟甲烷及四氟甲烷分子間之解離能(Dec)關係圖。 9 圖 2-7. 二氧化碳於第一型、第二型及第三型溶劑中之溶解度(重量百分率)與壓力之關係圖。 14 圖 2-8. (a)不同溶劑之二氧化碳壓力與其溶解度之關係圖。(b)不同溶劑之體積膨脹率與二氧化碳壓力之關係圖。(c)不同溶劑之密度與二氧化碳溶解度之關係圖。(d)不同溶劑之體積膨脹率與二氧化碳溶解度之關係圖。 15 圖 2-9. 不同溫度條件下,二氧化碳膨脹甲醇及二氧化碳膨脹乙醇之(a) π*值與(b) β值與二氧化碳溶解度之關係圖。 16 圖 2-10. 於溫度313 K下,benzonitrile之擴散係數與二氧化碳壓力之關係圖,其中液相中二氧化碳莫耳分率由不同符號表示:▲, 0;△, 0.1;■, 0.2;□, 0.3;●, 0.4;○, 0.5。 16 圖 2-11. 不同溫度條件下,氫氣增強因子與二氧化碳壓力之關係圖。其中,氫氣/二氧化碳壓力比分別為(a) 0.65/0.35及(b) 0.80/0.20。 17 圖 2-12. 各種型態之奈米材料,包含零維之球狀、立方狀及多面體狀;一維之棒狀、線狀;二維之碟狀、三角狀、六角狀及平板狀。 19 圖 2-13. 奈米材料之成核步驟、成長步驟及其影響因素之示意圖。 20 圖 2-14. 利用(a) hot-injection、(b) Seed-mediated growth及(c) digestive ripening等方法製備粒徑分佈均勻之零維奈米粒子。. 21 圖 2-15. 非等向成長之示意圖。(a)沿z軸成長形成一維之棒狀奈米材料,(b)沿x-y方向成長形成二維之碟狀奈米材料。 22 圖 2-16. (a) Seed-mediated SLS growth process之示意圖。(b)以奈米金為種晶,鍺奈米線沿<111>方向進行成長步驟。(c)鍺奈米線之SEM圖。 23 圖 2-17. (a)聚集成一維型態之奈米二氧化鈦粒子。(b)鋸尺狀、螺旋狀、分支狀及環狀之奈米硒化鉛材料。附圖為各種型態奈米材料之基本單位粒子組裝示意圖。 24 圖 2-18. 藉由Selective adhesion效應生成(a)一維之硒化鎘奈米棒及(b)二維之硫化銅奈米碟之示意圖。 25 圖 5-1. 各種利用剪切力效應之分散設備。 38 圖 5-2. (a)研磨能量之強度及(b)研磨時間與產物粒徑之關係圖。 39 圖 5-3. 利用衝擊力之分散設備,包含加速噴嘴及衝擊板等裝置。 39 圖 5-4. 高壓流體均質設備之示意圖。 41 圖 5-5. 不同製程條件之二氧化矽奈米粒子粒徑與壓力降之關係圖。(a)不同氧氣流率及(b)不同燒結溫度。Aerosil 200 及Aerosil OX 50為商業產品之型號。 41 圖 5-6. 以超臨界二氧化碳輔助分散碳黑粒子/水溶液之示意圖。 43 圖 5-7. 利用氣體快速膨脹機制分散兩種奈米粒子之示意圖。 44 圖 5-8. 不同溫度條件下,染料粒子粒徑與操作壓力之關係圖。. 44 圖 5-9. 以超臨界二氧化碳輔助分散染料之設備示意圖。 45 圖 5-10. 以超臨界二氧化碳輔助分散銀粒子之裝置圖。 47 圖 5-11. 以超臨界二氧化碳輔助分散銀粒子之實驗流程圖。 49 圖 5-12. 經超音波震盪後之銀粒子/甲苯/正十二烷硫醇溶液呈現混濁暗灰色。添加分散劑(正十二烷硫醇)之濃度為0.1至10 mM。 52 圖 5-13. 奈米銀溶膠及經超音波震盪後之銀粒子/甲苯/正十二烷硫醇溶液之UV-visible圖譜。插圖中左瓶為濕式化學法製備之奈米銀溶膠,右瓶為銀粒子/甲苯/正十二烷硫醇溶液。 52 圖 5-14. 銀粒子/甲苯/正十二烷硫醇溶液之吸收值百分率與靜置時間之關係圖。經超音波震盪完,於波長600 nm所測得之吸收值設定為100%。 53 圖 5-15. (a)未經超音波震盪及(b)經超音波震盪銀粒子之SEM圖譜。 54 圖 5-16. 不同溫度條件下,銀粒子粒徑與操作壓力之關係圖。其中,溶劑為(a)正庚烷、(b)甲苯及(c)乙酸以酯,且添加之保護劑為正十二烷硫醇(10 mM)。 58 圖 5-17. 不同溫度條件下,銀粒子粒徑與操作壓力之關係圖。其中,溶劑為(a)正庚烷、(b)甲苯及(c)乙酸以酯,且添加之保護劑為異硬脂酸(10 mM)。 59 圖 5-18. (a)未經二氧化碳輔助分散之銀粒子/正庚烷/正十二烷硫醇溶液及(b)經25°C、800 psi操作條件下銀粒子/正庚烷/正十二烷硫醇溶液之UV-visible圖譜。 61 圖 5-19. (a) 200及(b)500倍率下所觀察之銀粒子二維薄膜型態。 61 圖 6-1. 以二氧化碳膨脹液體法製備奈米銀粒子之設備示意圖。 77 圖 6-2. 異硬脂酸之1H-NMR圖譜。 81 圖 6-3. 異硬脂酸銀鹽之1H-NMR圖譜。 81 圖 6-4. 異硬脂酸、異硬脂酸銀鹽及以二氧化碳膨脹液體法製備奈米銀粒子之ATR-FTIR圖譜。 82 圖 6-5. 硬脂酸銀鹽(AgSt)及異硬脂酸銀鹽(AgISt)之XRD圖譜。 84 圖 6-6. (a)硬脂酸銀鹽及(b)異硬脂酸銀鹽之自組裝結構示意圖。 84 圖 6-7. 硬脂酸銀鹽(AgSt)及異硬脂酸銀鹽(AgISt)之(a) DSC圖譜及(b) TGA圖譜。 86 圖 6-8. (a) AgNPs-a (PH2 = 100 psi)及(b) AgNPs-b (PH2 = 800 psi)於不同反應時間下之UV-visible圖譜。 88 圖 6-9. (a) AgNPs-a及(b) AgNPs-b之TEM圖譜及粒徑分佈長條圖。 88 圖 6-10. 以異硬脂酸銀鹽為前趨物、氫氣為還原劑,於二氧化碳膨脹正庚烷中製備奈米銀粒子之示意圖。 91 圖 6-11. 奈米銀膠體在不同二氧化碳總壓製備條件下之UV-visible圖譜(PH2=14 psia、[AgISt] = 0.25 mM及reaction time = 30 min)。 91 圖 6-12. 圖6-12. (a) AgNPs-1、(b) AgNPs-2及(c) AgNPs-3於不同PH2/PCO2條件下之UV-visible圖譜。(d) AgNPs-1、AgNPs-2及AgNPs-3在412 nm之吸收強度與反應時間之關係圖。 94 圖 6-13. (a) AgNPs-1、(b) AgNPs-2及(c) AgNPs-3之TEM圖譜。 95 圖 6-14. AgNPs-3之(a)粒徑分佈長條圖、(b) HRTEM圖譜及(c) SAED圖譜。 95 圖 6-15. 奈米銀粒子表面包覆異硬脂酸之示意圖。 96 圖 6-16. (a) AgNPs-4、(b) AgNPs-5、(c) AgNPs-6、(d) AgNPs-7、(e) AgNPs-8、(f) AgNPs-9、(g) AgNPs-10及(h) AgNPs-11之TEM圖譜。 98 圖 6-17. 於40°C、[AgISt] = 0.25 mM、PH2/PCO2 =14/800及反應時間=60 min條件下,製備之奈米銀粒子。 98 圖 6-18. 於不同PH2/PCO2 條件下,(a) AgNPs-12、(b) AgNPs-13、(c) AgNPs-14、(d) AgNPs-15、(e) AgNPs-16及(f) AgNPs-17之TEM圖譜。 102 圖 6-19. (a) AgNPs-18、(b) AgNPs-19及(c) AgNPs-20之TEM圖譜。 102 圖 6-20. 於60°C、[AgISt] = 1 mM、[isostearic acid] = 2 mM、PH2/PCO2 =14/600及反應時間30 min之製程條件下,奈米銀粒子之(a) UV-visible圖譜及(b) TEM圖譜。 103 圖 6-21. 於80°C、[AgISt] = 1 mM、[isostearic acid] = 5 mM、PH2/PCO2 =100/800及反應時間60 min之製程條件下,奈米銀粒子之(a) UV-visible圖譜及(b) TEM圖譜。 103 圖 7-1. 於155°C下製備奈米硫化銅材料之TEM圖,其反應時間分別為(A) 30 min、(B) 60 min、(C) 120 min 及(D) 150 min。 114 圖 7-2. 於190°C條件下製備(a)三角形型態及(b)棒狀奈米硫化鎳之TEM圖。 115 圖 7-3. 正十二烷硫醇銅鹽經無溶劑熱裂解法製備六角形型態奈米硫化銅之機制示意圖 115 圖 7-4. 利用正十二烷硫醇銅鹽之層狀結構特性製備硫化銅奈米線之TEM圖。 115 圖 7-5. 硫醇保護之奈米銅粒子經熱裂解程序製備六角形型態奈米硫化銅之機制示意圖。 116 圖 7-6. 利用[M(S2CNE2)2]為前趨物、奈米鉍粒子為種晶,以Seed-mediated solution-liquid-solid growth法製備硫化鉛及硫化鎘奈米線之示意圖。 117 圖 7-7. 利用Cu[S2P(OCnH2n+1)2]2 (n=8, 12)為前趨物,在不同反應溫度條件下製備各種型態之奈米硫化銅。 118 圖 7-8. 前趨物copper thiobenzoate經油胺之親核性反應產生電子轉移而製備奈米硫化銅之反應機制。 118 圖 7-9. 利用油酸金屬鹽複合物為前趨物、烷基硫醇為硫源,經熱溶劑法製備奈米硫化金屬材料之示意圖。 121 圖 7-10. 在不同反應溫度條件下製備各種型態奈米硫化銅材料之示意圖。 121 圖 7-11. 本研究製備奈米硫化金屬之裝置示意圖。 127 圖 7-12. (a) 硬脂酸(stearic acid)、(b)硬脂酸鋅鹽(ZnSt2)、(c)硬脂酸鎘鹽(CdSt2)及(d)硬脂酸銅鹽(CuSt2)之ATR-FTIR圖譜。 133 圖 7-13. (a)異硬脂酸(isostearic acid)、(b)異硬脂酸鋅鹽(ZnISt2)、(c)異硬脂酸鎘鹽(CdISt2)及(d)異硬脂酸銅鹽(CuISt2)之ATR-FTIR圖譜。 133 圖 7-14. (a)異硬脂酸鋅鹽(ZnISt2)、(b)異硬脂酸鎘鹽(CdISt2)及(c)異硬脂酸銅鹽(CuISt2)之1H-NMR圖譜。 135 圖 7-15. (a)硬脂酸鋅鹽(ZnSt2)/異硬脂酸鋅鹽(ZnISt2)、(b)硬脂酸鎘鹽(CdSt2)/異硬脂酸鎘鹽(CdISt2)及(c)硬脂酸銅鹽(CuSt2)/異硬脂酸銅鹽(CuISt2)之XRD圖譜。 137 圖 7-16. 硬脂酸鋅鹽(ZnSt2)、異硬脂酸鋅鹽(ZnISt2)、硬脂酸鎘鹽(CdSt2)、異硬脂酸鎘鹽(CdISt2)、硬脂酸銅鹽(CuSt2)及異硬脂酸銅鹽(CuISt2)之DSC圖譜。 138 圖 7-17. 於40°C條件下製備之奈米硫化鋅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 141 圖 7-18. 於80°C條件下製備之奈米硫化鋅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 141 圖 7-19. 於120°C條件下製備之奈米硫化鋅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 142 圖 7-20. 於160°C條件下製備之奈米硫化鋅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 142 圖 7-21. 於40°C條件下製備之奈米硫化鎘材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 147 圖 7-22. 於80°C條件下製備之奈米硫化鎘材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 147 圖 7-23. 於120°C條件下製備之奈米硫化鎘材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 148 圖 7-24. 於160°C條件下製備之奈米硫化鎘材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 148 圖 7-25. (a) CdS-40-12、(b-1, b-2) CdS-80-12、(c-1, c-2) CdS-120-6及 (d-1, d-2) CdS-160-6之HRTEM圖。 149 圖 7-26. 奈米棒材料藉由偶極-偶極作用力(如箭頭所示)產生自組裝之示意圖。 150 圖 7-27. CdS-40-6於銅網上形成(a)雙條紋及(b)多條紋之帶狀圖案。 150 圖 7-28. 於40°C條件下製備之奈米硫化銅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 154 圖 7-29. 於80°C條件下製備之奈米硫化銅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 154 圖 7-30. 於120°C條件下製備之奈米硫化銅材料之TEM圖,其中反應時間分別為(a) 1 hr、(b) 3 hr、(c) 6 hr及(d) 12 hr。 155 圖 7-31. 於160°C條件下製備之奈米硫化銅材料之TEM圖,其中反應時間分別為(a-1, a-2) 1 hr、(b-1, b-2) 3 hr、(c-1, c-2) 6 hr及(d-1, d-2) 12 hr。 156 圖 7-32. (a) CuS-120-12之XRD圖譜。(b) JCPDS card (78-0876) database之XRD圖譜。 157

    第二章
    1. Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J Phys Chem B 2004, 108 (28), 9574-9587.
    2. Jessop, P. G.; Ikariya, T.; Noyori, R., Homogeneous catalysis in supercritical fluids. Chemical Reviews 1999, 99 (2), 475-493.
    3. Eastoe, J.; Gold, S.; Steytler, D. C., Surfactants for CO2. Langmuir 2006, 22 (24), 9832-9842.
    4. Liu, Z. T.; Wu, J.; Liu, L.; Sun, C. A.; Song, L. P.; Gao, Z. W.; Dong, W. S.; Lu, J., Solubilities of AOT analogues surfactants in supercritical CO2 and HFC-134a fluids. J Chem Eng Data 2006, 51 (5), 1761-1768.
    5. Tan, B.; Lee, J. Y.; Cooper, A. I., Ionic hydrocarbon surfactants for emulsification and dispersion polymerization in supercritical CO2. Macromolecules 2006, 39 (22), 7471-7473.
    6. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 10.
    7. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 4~5.
    8. Raveendran, P.; Ikushima, Y.; Wallen, S. L., Polar attributes of supercritical carbon dioxide. Accounts Chem Res 2005, 38 (6), 478-485.
    9. Sato, H.; Matubayasi, N.; Nakahara, M.; Hirata, F., Which carbon oxide is more soluble? Ab initio study on carbon monoxide and dioxide in aqueous solution. Chemical Physics Letters 2000, 323 (3-4), 257-262.
    10. Kazarian, S.; Vincent, M.; Bright, F.; Liotta, C.; Eckert, C., Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 1996, 118 (7), 1729-1736.
    11. Raveendran, P.; Wallen, S., Exploring CO2-philicity: Effects of stepwise fluorination. The journal of physical chemistry. B 2003, 107 (6), 1473-1477.
    12. Hallett, J.; Kitchens, C.; Hernandez, R.; Liotta, C.; Eckert, C., Probing the cybotactic region in gas-expanded liquids (GXLs). Accounts Chem Res 2006, 39 (8), 531-538.
    13. Jessop, P. G.; Subramaniam, B., Gas-expanded liquids. Chemical Reviews 2007, 107 (6), 2666-2694.
    14. Akien, G.; Poliakoff, M., A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green chemistry 2009, 11 (8), 1083-1100.
    15. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216.
    16. Kamlet, M.; Abboud, J.; Taft, R., Solvatochromic comparison method .6. pi-star scale of solvent polarities. J Am Chem Soc 1977, 99 (18), 6027-6038.
    17. Wyatt, V.; Bush, D.; Lu, J.; Hallett, J.; Liotta, C.; Eckert, C., Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. The Journal of supercritical fluids 2005, 36 (1), 16-22.
    18. Lin, I.; Tan, C., Diffusion of benzonitrile in CO2-expanded ethanol. Journal of chemical & engineering data 2008, 53 (8), 1886-1891.
    19. Lin, I.; Tan, C., Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol. The Journal of supercritical fluids 2008, 46 (2), 112-117.
    20. Sassiat, P.; Mourier, P.; Caude, M.; Rosset, R., Measurement of diffusion-coefficients in supercritical carbon-dioxide and correlation with the equation of wilke and chang. Analytical chemistry 1987, 59 (8), 1164-1170.
    21. Maxey, N. B., Ph.D. dissertation. Georgia Institute of Technology, 2006.
    22. Christov, M.; Dohrn, R., High-pressure fluid phase equilibria - Experimental methods and systems investigated (1994-1999). Fluid phase equilibria 2002, 202 (1), 153-218.
    23. Yin, J.; Tan, C., Solubility of hydrogen in toluene for the ternary system H2+CO2+ toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid phase equilibria 2006, 242 (2), 111-117.
    24. Lopez-Castillo, Z.; Aki, S.; Stadtherr, M.; Brennecke, J., Enhanced solubility of oxygen and carbon monoxide in CO2-expanded liquids. Industrial & engineering chemistry research 2006, 45 (15), 5351-5360.
    25. Musie, G.; Wei, M.; Subramaniam, B.; Busch, D. H., Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coordin Chem Rev 2001, 219, 789-820.
    26. Trindade, T.; O'Brien, P.; Pickett, N. L., Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 2001, 13 (11), 3843-3858.
    27. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45 (21), 3414-3439.
    28. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Edit 2007, 46 (25), 4630-4660.
    29. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H., Cds Nanoclusters - Synthesis, Characterization, Size-Dependent Oscillator Strength, Temperature Shift of the Excitonic-Transition Energy, and Reversible Absorbency Shift. J Phys Chem-Us 1994, 98 (31), 7665-7673.
    30. Li, L.; Hu, J.; Yang, W.; Alivisatos, A., Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 2001, 1 (7), 349-351.
    31. Kim, Y.; Jun, Y.; Jun, B.; Lee, S.; Cheon, J., Sterically induced shape and crystalline phase control of GaP nanocrystals. J Am Chem Soc 2002, 124 (46), 13656-13657.
    32. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Chem Soc 1993, 115 (19), 8706-8715.
    33. Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T., One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Edit 2005, 44 (19), 2872-2877.
    34. Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I., Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 2002, 124 (10), 2305-2311.
    35. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287 (5457), 1471-1473.
    36. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J Am Chem Soc 2002, 124 (7), 1424-1429.
    37. Penn, R. L.; Banfield, J. F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim Cosmochim Ac 1999, 63 (10), 1549-1557.
    38. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 2005, 127 (19), 7140-7147.
    39. Zhang, H. Z.; Huang, F.; Gilbert, B.; Banfield, J. F., Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B 2003, 107 (47), 13051-13060.
    40. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 2000, 122 (51), 12700-12706.
    41. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005, 21 (21), 9451-9456.

    第五章
    1. Bonnemann, H.; Richards, R. M., Nanoscopic metal particles - Synthetic methods and potential applications. Eur J Inorg Chem 2001, (10), 2455-2480.
    2. Alivisatos, A., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937.
    3. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 1993, 115 (19), 8706-8715.
    4. Yuranova, T.; Rincon, A.; Bozzi, A.; Parra, S.; Pulgarin, C.; Albers, P., Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. Journal of photochemistry and photobiology. A, Chemistry 2003, 161 (1), 27-34.
    5. Miola, M.; Ferraris, S.; Nunzio, S.; Robotti, P.; Bianchi, G.; Fucale, G., Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. Journal of materials science. Materials in medicine 2009, 20 (3), 741-749.
    6. Verne, E.; Di Nunzio, S.; Bosetti, M.; Appendino, P.; Brovarone, C.; Maina, G., Surface characterization of silver-doped bioactive glass. Biomaterials 2005, 26 (25), 5111-5119.
    7. Shon, Y. S.; Cutler, E., Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using bunte salts. Langmuir 2004, 20 (16), 6626-6630.
    8. Chen, M.; Wang, L. Y.; Han, J. T.; Zhang, J. Y.; Li, Z. Y.; Qian, D. J., Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. J Phys Chem B 2006, 110 (23), 11224-11231.
    9. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
    10. Lin, X. Z.; Teng, X. W.; Yang, H., Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 2003, 19 (24), 10081-10085.
    11. Bunge, S. D.; Boyle, T. J.; Headley, T. J., Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 2003, 3 (7), 901-905.
    12. Chen, Y. Z.; Peng, D. L.; Lin, D. P.; Luo, X. H., Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 2007, 18 (50), -.
    13. Taleb, A.; Petit, C.; Pileni, M., Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem Mater 1997, 9 (4), 950-959.
    14. Setua, P.; Chakraborty, A.; Seth, D.; Bhatta, M.; Satyam, P.; Sarkar, N., Synthesis, optical properties, and surfact enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. The journal of physical chemistry. C 2007, 111 (10), 3901-3907.
    15. Henglein, A.; Giersig, M., Formation of colloidal silver nanoparticles: Capping action of citrate. The journal of physical chemistry. B 1999, 103 (44), 9533-9539.
    16. Callegari, A.; Tonti, D.; Chergui, M., Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 2003, 3 (11), 1565-1568.
    17. Muller, F.; Peukert, W.; Polke, R.; Stenger, F., Dispersing nanoparticles in liquids. Int J Miner Process 2004, 74, S31-S41.
    18. Froeschke, S.; Kohler, S.; Weber, A. P.; Kasper, G., Impact fragmentation of nanoparticle agglomerates. J Aerosol Sci 2003, 34 (3), 275-287.
    19. Seipenbusch, M.; Toneva, P.; Peukert, W.; Weber, A. P., Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Char 2007, 24 (3), 193-200.
    20. Wengeler, R.; Teleki, A.; Vetter, M.; Pratsinis, S. E.; Nirschl, H., High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 2006, 22 (11), 4928-4935.
    21. Wengeler, R.; Nirschl, H., Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J Colloid Interf Sci 2007, 306 (2), 262-273.
    22. Wengeler, R.; Wolf, F.; Dingenouts, N.; Nirschl, H., Characterizing dispersion and fragmentation of fractal, pyrogenic silica nanoagglomerates by small-angle x-ray scattering. Langmuir 2007, 23 (8), 4148-4154.
    23. Kamiwano, M.; Nishi, K.; Inoue, Y., EP850682-A; EP850682-A1; JP10192670-A; SG60111-A1; US5921478-A; KR98063361-A; KR283238-B; CN1185990-A; CN1057480-C, EP850682-A EP850682-A1 01 Jul 1998 B01F-003/12 199830.
    24. Wei, D.; Dave, R.; Pfeffer, R., Mixing and characterization of nanosized powders: An assessment of different techniques. Journal of nanoparticle research 2002, 4 (1-2), 21-41.
    25. Rouse, M. W.; Deeb, V. M., US2003026975-A1; US6663954-B2, US2003026975-A1 06 Feb 2003 B32B-005/16 200341.
    26. Rouse, M. W.; Deeb, V. M., US6426136-B1, US6426136-B1 30 Jul 2002 B32B-005/16 200321 Pages: 7.
    27. Deeb, V. M.; Rouse, M. W., EP1186625-A; EP1186625-A2; CA2356800-A1; BR200103927-A; JP2002126562-A; US6680110-B1, EP1186625-A EP1186625-A2 13 Mar 2002 C08J-003/12 200237.
    28. Cheng, W. T.; Hsu, C. W.; Chih, Y., Dispersion of organic pigments using supercritical carbon dioxide. J Colloid Interf Sci 2004, 270 (1), 106-112.
    29. Wu, H. T.; Lee, M. J.; Lin, H. M., Supercritical fluid-assisted dispersion of ultra-fine pigment red 177 particles with blended dispersants. J Supercrit Fluid 2006, 39 (1), 127-134.
    30. Bell, P.; Amand, M.; Fan, X.; Enick, R.; Roberts, C., S表 dispersions of silver nanoparticles in carbon dioxide with fluorine-free ligands. Langmuir 2005, 21 (25), 11608-11613.
    31. Anand, M.; Bell, P.; Fan, X.; Enick, R.; Roberts, C., Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. The journal of physical chemistry. B 2006, 110 (30), 14693-14701.
    32. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216.
    33. Kazarian, S.; Vincent, M.; Bright, F.; Liotta, C.; Eckert, C., Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 1996, 118 (7), 1729-1736.
    34. McLeod, M. C.; Anand, M.; Kitchens, C. L.; Roberts, C. B., Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 2005, 5 (3), 461-465.
    35. McLeod, M. C.; Kitchens, C. L.; Roberts, C. B., CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir 2005, 21 (6), 2414-2418.
    第六章
    1. Alivisatos, A., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937.
    2. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281 (5385), 2013-2016.
    3. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
    4. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; ElSayed, M. A., Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272 (5270), 1924-1926.
    5. Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540.
    6. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem Res 2001, 34 (3), 181-190.
    7. Kamat, P. V., Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 2002, 106 (32), 7729-7744.
    8. Murphy, C. J.; San, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005, 109 (29), 13857-13870.
    9. Voisin, C.; Del Fatti, N.; Christofilos, D.; Vallee, F., Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 2001, 105 (12), 2264-2280.
    10. Zhang, J. Z., Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts Chem Res 1997, 30 (10), 423-429.
    11. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006, 110 (33), 16248-16253.
    12. Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D., Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18 (22), -.
    13. Chimentao, R. J.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E., Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem Commun 2004, (7), 846-847.
    14. Jiang, Z. J.; Liu, C. Y.; Sun, L. W., Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 2005, 109 (5), 1730-1735.
    15. Patel, A. C.; Li, S. X.; Wang, C.; Zhang, W. J.; Wei, Y., Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 2007, 19 (6), 1231-1238.
    16. Zou, S. L.; Schatz, G. C., Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters 2005, 403 (1-3), 62-67.
    17. Zheng, J. W.; Li, X. W.; Gu, R. N.; Lu, T. H., Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode. J Phys Chem B 2002, 106 (5), 1019-1023.
    18. Haes, A. J.; Van Duyne, R. P., A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002, 124 (35), 10596-10604.
    19. McFarland, A. D.; Van Duyne, R. P., Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 2003, 3 (8), 1057-1062.
    20. Evanoff, D. D.; Chumanov, G., Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem 2005, 6 (7), 1221-1231.
    21. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications 1994, (7), 801-802.
    22. Sarathy, K. V.; Raina, G.; Yadav, R. T.; Kulkarni, G. U.; Rao, C. N. R., Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. Journal of Physical Chemistry B 1997, 101 (48), 9876-9880.
    23. Yamamoto, M.; Nakamoto, M., Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine. Journal of materials chemistry 2003, 13 (9), 2064-2065.
    24. Yamamoto, M.; Kashiwagi, Y.; Nakamoto, M., Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 2006, 22 (20), 8581-8586.
    25. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M., Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interf Sci 2006, 300 (1), 169-175.
    26. Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Tian, J. F.; Bao, L. H.; Chen, S. T.; Ding, H.; Gao, H. J., Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties. Chem Mater 2008, 20 (22), 6939-6944.
    27. Chen, M.; Feng, Y. G.; Wang, X.; Li, T. C.; Zhang, J. Y.; Qian, D. J., Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 2007, 23 (10), 5296-5304.
    28. Bunge, S. D.; Boyle, T. J.; Headley, T. J., Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 2003, 3 (7), 901-905.
    29. Lu, X. M.; Tnan, H. Y.; Korgel, B. A.; Xia, Y. N., Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem-Eur J 2008, 14 (5), 1584-1591.
    30. Hiramatsu, H.; Osterloh, F. E., A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 2004, 16 (13), 2509-2511.
    31. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 10.
    32. Ji, M.; Chen, X. Y.; Wai, C. M.; Fulton, J. L., Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. J Am Chem Soc 1999, 121 (11), 2631-2632.
    33. Ohde, H.; Hunt, F.; Wai, C. M., Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater 2001, 13 (11), 4130-4135.
    34. McLeod, M. C.; McHenry, R. S.; Beckman, E. J.; Roberts, C. B., Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. J Phys Chem B 2003, 107 (12), 2693-2700.
    35. Sun, Y. P.; Atorngitjawat, P.; Meziani, M. J., Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 2001, 17 (19), 5707-5710.
    36. Meziani, M. J.; Pathak, P.; Beacham, F.; Allard, L. F.; Sun, Y. P., Nanoparticle formation in rapid expansion of water-in-supercritical carbon dioxide microemulsion into liquid solution. J Supercrit Fluid 2005, 34 (1), 91-97.
    37. Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A., Role of steric stabilization on the arrested growth of silver nanocrystals in supercritical carbon dioxide. J Phys Chem B 2002, 106 (47), 12178-12185.
    38. Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A., Nanocrystal arrested precipitation in supercritical carbon dioxide. J Phys Chem B 2001, 105 (39), 9433-9440.
    39. Jessop, P. G.; Subramaniam, B., Gas-expanded liquids. Chemical Reviews 2007, 107 (6), 2666-2694.
    40. Akien, G.; Poliakoff, M., A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green chemistry 2009, 11 (8), 1083-1100.
    41. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216.
    42. Yin, J.; Tan, C., Solubility of hydrogen in toluene for the ternary system H2+CO2+ toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid phase equilibria 2006, 242 (2), 111-117.
    43. Lin, I.; Tan, C., Diffusion of benzonitrile in CO2-expanded ethanol. Journal of chemical & engineering data 2008, 53 (8), 1886-1891.
    44. Lin, I.; Tan, C., Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol. The Journal of supercritical fluids 2008, 46 (2), 112-117.
    45. Bogel-Lukasik, E.; Fonseca, I.; Bogel-Lukasik, R.; Tarasenko, Y. A.; da Ponte, M. N.; Paiva, A.; Brunner, G., Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide. Green chemistry 2007, 9 (5), 427-430.
    46. McLeod, M. C.; Anand, M.; Kitchens, C. L.; Roberts, C. B., Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 2005, 5 (3), 461-465.
    47. McLeod, M. C.; Kitchens, C. L.; Roberts, C. B., CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir 2005, 21 (6), 2414-2418.
    48. Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.; Nagasawa, H.; Nakamoto, M.; Yamaguchi, T.; Yase, K., Two-dimensional array of silver nanoparticles. Thin Solid Films 1998, 329, 524-527.
    49. Lee, S. J.; Han, S. W.; Choi, H. J.; Kim, K., Structure and thermal behavior of a layered silver carboxylate. J Phys Chem B 2002, 106 (11), 2892-2900.
    50. Yang, N. J.; Aoki, K.; Nagasawa, H., Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J Phys Chem B 2004, 108 (39), 15027-15032.
    51. Jacobson, C. A.; Holmes, A., Solubility data for various salts of lauric, myristic, palmitic, and stearic acids. J Biol Chem 1916, 25 (1), 29-53.
    52. Malik, W. U.; Jain, A. K.; Jhamb, O. P., Solutions of soaps in organic solvents. J Chem Soc A 1971, (10), 1514.
    53. Tolochko, B.; Chernov, S.; Nikitenko, S.; Whitcomb, D., EXAFS determination of the structure of silver stearate, [Ag(O2C(CH2)(16)CH3](2), and the effect of temperature on the silver coordination sphere. Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment 1998, 405 (2-3), 428-434.
    54. Binnemans, K.; Van Deun, R.; Thijs, B.; Vanwelkenhuysen, I.; Geuens, I., Structure and mesomorphism of silver alkanoates. Chem Mater 2004, 16 (10), 2021-2027.
    55. Lin, B.; Dong, J.; Whitcomb, D.; McCormick, A.; Davis, H., Crystallization of silver stearate from sodium stearate dispersions. Langmuir 2004, 20 (21), 9069-9074.
    56. Dong, J.; Whitcomb, D.; McCormick, A.; Davis, H., Crystallization of silver carboxylates from sodium carboxylate mixtures. Langmuir 2007, 23 (15), 7963-7971.
    57. Barrufet, M. A.; Salem, S. K. E.; Tantawy, M.; IglesiasSilva, G. A., Liquid viscosities of carbon dioxide plus hydrocarbons from 310 K to 403 K. J Chem Eng Data 1996, 41 (3), 436-439.
    58. Li, H. P.; Maroncelli, M., Solvation and solvatochromism in CO2-expanded liquids. 1. Simulations of the solvent systems CO2+cyclohexane, acetonitrile, and methanol. J Phys Chem B 2006, 110 (42), 21189-21197.
    59. Xie, Z. Z.; Snavely, W. K.; Scurto, A. M.; Subramaniam, B., Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353.15 K and 9 MPa. J Chem Eng Data 2009, 54 (5), 1633-1642.
    60. Bezanehtak, K.; Dehghani, F.; Foster, N. R., Vapor-liquid equilibrium for the carbon dioxide plus hydrogen plus methanol ternary system. J Chem Eng Data 2004, 49 (3), 430-434.
    第七章
    1. Koch, D. F. A.; Mcintyre, R. J., Application of Reflectance Spectroscopy to a Study of Anodic-Oxidation of Cuprous Sulfide. J Electroanal Chem 1976, 71 (3), 285-296.
    2. Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A., Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 2003, 125 (19), 5638-5639.
    3. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J Am Chem Soc 2003, 125 (51), 16050-16057.
    4. Ghezelbash, A.; Sigman, M. B.; Korgel, B. A., Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 2004, 4 (4), 537-542.
    5. Chen, Y. B.; Chen, L.; Wu, L. M., The Structure-Controlling Solventless Synthesis and Optical Properties of Uniform Cu2S Nanodisks. Chem-Eur J 2008, 14 (35), 11069-11075.
    6. Chen, L.; Chen, Y. B.; Wu, L. M., Synthesis of uniform CU2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method. J Am Chem Soc 2004, 126 (50), 16334-16335.
    7. Mott, D.; Yin, J.; Engelhard, M.; Loukrakpam, R.; Chang, P.; Miller, G.; Bae, I. T.; Das, N. C.; Wang, C. M.; Luo, J.; Zhong, C. J., From Ultrafine Thiolate-Capped Copper Nanoclusters toward Copper Sulfide Nanodiscs: A Thermally Activated Evolution Route. Chem Mater 2010, 22 (1), 261-271.
    8. Sun, J. W.; Buhro, W. E., The use of single-source precursors for the solution-liquid-solid growth of metal sulfide semiconductor nanowires. Angew Chem Int Edit 2008, 47 (17), 3215-3218.
    9. Tian, L.; Yep, L. Y.; Ong, T. T.; Yi, J. B.; Ding, J.; Vittal, J. J., Synthesis of NiS and MnS Nanocrystals from the Molecular Precursors (TMEDA)M(SC{O}C6H5)(2) (M = Ni, Mn). Cryst Growth Des 2009, 9 (1), 352-357.
    10. Beal, J. H. L.; Etchegoin, P. G.; Tilley, R. D., Transition Metal Polysulfide Complexes as Single-Source Precursors for Metal Sulfide Nanocrystals. J Phys Chem C 2010, 114 (9), 3817-3821.
    11. Du, X. S.; Yu, Z. Z.; Dasari, A.; Ma, J.; Meng, Y. Z.; Mai, Y. W., Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem Mater 2006, 18 (22), 5156-5158.
    12. Du, X. S.; Mo, M. S.; Zheng, R. K.; Lim, S. H.; Meng, Y. Z.; Mai, Y. W., Shape-controlled synthesis and assembly of copper sulfide nanoparticles. Cryst Growth Des 2008, 8 (6), 2032-2035.
    13. Lou, W. J.; Chen, M.; Wang, X. B.; Liu, W. M., Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. J Phys Chem C 2007, 111 (27), 9658-9663.
    14. Pradhan, N.; Efrima, S., Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. J Am Chem Soc 2003, 125 (8), 2050-2051.
    15. Pradhan, N.; Katz, B.; Efrima, S., Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J Phys Chem B 2003, 107 (50), 13843-13854.
    16. Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S., Phase-selective synthesis of copper sulfide nanocrystals. Chem Mater 2006, 18 (26), 6170-6177.
    17. Choi, S. H.; An, K.; Kim, E. G.; Yu, J. H.; Kim, J. H.; Hyeon, T., Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals. Adv Funct Mater 2009, 19 (10), 1645-1649.
    18. Jun, S.; Jang, E. J.; Chung, Y. S., Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology 2006, 17 (19), 4806-4810.
    19. Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D., Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J Am Chem Soc 2008, 130 (32), 10482.
    20. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J Am Chem Soc 2003, 125 (36), 11100-11105.
    21. Zhang, H.; Zhang, Y. Q.; Yu, J. X.; Yang, D. R., Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. J Phys Chem C 2008, 112 (35), 13390-13394.
    22. Zhang, H. T.; Wu, G.; Chen, X. H., Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 2005, 21 (10), 4281-4282.
    23. Du, W. M.; Qian, X. F.; Ma, X. D.; Gong, Q.; Cao, H. L.; Yin, H., Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem-Eur J 2007, 13 (11), 3241-3247.
    24. Roy, P.; Mondal, K.; Srivastava, S. K., Synthesis of twinned CuS nanorods by a simple wet chemical method. Cryst Growth Des 2008, 8 (5), 1530-1534.
    25. Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P., Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 2008, 8 (8), 2551-2555.
    26. Liu, Z. P.; Liang, J. B.; Xu, D.; Lu, J.; Qian, Y. T., A facile chemical route to semiconductor metal sulfide nanocrystal superlattices{. Chem Commun 2004, (23), 2724-2725.
    27. Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J., Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc 2001, 123 (21), 5150-5151.
    28. Ghezelbash, A.; Koo, B.; Korgel, B. A., Self-assembled stripe patterns of CdS nanorods. Nano Lett 2006, 6 (8), 1832-1836.
    29. Nann, T.; Schneider, J., Origin of permanent electric dipole moments in wurtzite nanocrystals. Chemical Physics Letters 2004, 384 (1-3), 150-152.
    30. Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N., Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J Am Chem Soc 2008, 130 (28), 8900.
    31. Tanaka, A.; Kamikubo, H.; Doi, Y.; Hinatsu, Y.; Kataoka, M.; Kawai, T.; Hasegawa, Y., Self-Assembly and Enhanced Magnetic Properties of Three-Dimensional Superlattice Structures Composed of Cube-Shaped EuS Nanocrystals. Chem Mater 2010, 22 (5), 1776-1781.
    32. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005, 21 (21), 9451-9456.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE