簡易檢索 / 詳目顯示

研究生: 卓俊宏
Jun-Hung Cho
論文名稱: 蛋白質激脢C參與膠達納黴 素於人類非小型肺癌細胞誘發熱休克蛋白70-1基因的訊號傳遞
Involvement of Protein Kinase C in the Geldanamycin-induced Transactivation of hsp70-1 in Human Non-Small Cell Lung Cancer H460 Cells
指導教授: 黎耀基
Yiu-Kay Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
中文關鍵詞: 人類非小型肺癌細胞蛋白質激脢C熱休克蛋白
外文關鍵詞: Human Non-Small Cell Lung Cancer, Protein Kinase C, heat shock protein
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    細胞在正常生理下,如果受到熱、重金屬、病毒、藥物等外來因子的刺激後 ,細胞會因因應這些刺激而產生熱休克蛋白(Heat Shock proteins)。而一般熱休克蛋白可因分子量分成四群: 1.熱休克蛋白110(HSP110),2.熱休克蛋白90(HSP90) ,3.熱休克蛋白70(HSP70) ,4.熱休克蛋白70KD以下的熱休克蛋白。熱休克蛋白含有保護子(Chaperone)的功能,可以幫助新合成或受破壞之蛋白質的折疊,使其具有應有正確的結構和功能,當細胞處於逆境環境下,將會誘發細胞中熱休克蛋白表現增加。之前的研究發現,膠達納黴素 (geldanamycin, GA)處理下會造成細胞之中蛋白質的折疊不正常,引發細胞之逆境反應而誘導熱休克蛋白的合成增加,特別是熱休克蛋白70s(HSP70s)。

    在此論文中我們以H460人類非小型肺癌細胞為材料,探討GA誘發H460人類非小型肺癌細胞中HSP70表現所參與的訊息傳遞路徑。在我們的研究中發現,經過GA處理的H460人類非小型肺癌細胞,其細胞內HSP70蛋白質的表現會隨著GA的濃度以及處理時間的改變而改變,並且利用北方點墨(Northern Blot)實驗發現,GA是影響HSP70的轉錄過程。由於人類熱休克蛋白70含有許多isoforms存在,利用2-D及北方點墨(Northern Blot)的分析讓我們知道GA其所誘發熱休克蛋白70s主要為HSP70A(HSP70-1)熱休克蛋白,另外我們是第一個發現GA所誘導的HSP70D可能會透過PKC等Pathway去誘發。在kinas inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7)完全抑制HSP70A蛋白質的表現,而HA1043則無明顯的抑制作用,同時,H-7,H-8及HA1043對GA所誘發mRNA的增加也有相同的抑制現象。因此,可以知道在H460人類非小型肺癌細胞,GA所誘發HSP70A表現增加的訊息傳遞路徑中,細胞內的激鋂(Kinase)扮演重要的角色。在另一方面,利用electrophoretic mobility shift assay (EMSA)實驗,可以清楚的了解細胞核中轉錄蛋白和promoter的結合情形。因此經由EMSA的實驗,我們得到在GA處理狀況下轉錄蛋白會和熱休克轉錄序列(Heat shock element)有結合增加的現象。同時轉錄蛋白和HSE結合增加的現象也會被H-7,H-8所抑制,因此,我們更清楚的了解,HSE轉錄序列在GA所誘發HSP70表現增加的訊息傳遞過程裡扮演重要的角色。


    ABSTRACT
    Geldanamycin (GA) specifically binds to HSP90 and disrupts the interaction of HSP90 and its target proteins. The binding will lead to substrate protein dissociation from HSP90 and may affect their structures and functions. Herein, we showed that exposure of non-small lung cancer H460 cells to 0.5 mM GA leads to enhancement of the synthesis of the 70 kDa heat shock proteins (HSP70s). The induction of HSP70s by GA is concentration- and time-dependent and this process coincides to the accumulation of its mRNA. By using the specific probes for hsp70-1 and hsp70b, we found that HSP70-1 is abundantly involved in GA-induced HSP70s. Furthermore importantly, we demonstrated for the first time that the PKC pathway is significant in this process since it is inhibited by H-7 and H-8 but not affected by HA1043. Similar results can be found in the protein and mRNA level. These data lead us to conclude that PKC pathway plays a major role in the GA-induced HSP70-1 expression in H460 cells. By using the electrophoretic mobility shift assay (EMSA), we showed that proximal Heat shock element (HSE1) was responsible for the inducible expression of HSP70. We found that the nuclear extracts prepared from GA-treated cells exhibited a significant increase in binding activity toward Heat shock element. Moreover, this increase in binding activity toward the Heat shock element is reduced by H-7 and H-8 but not affected by HA1004. We concluded that the PKC pathway is the major pathway involved in GA-induced expression of HSP70-1 in H460 cells.

    中文摘要 英文摘要 INTRODUCTION EXPERIMENTAL PROCEDURES DISCUSSION REFERENCES FIGURE LEGENDS 附圖

    Reference
    1. Neckers, L., Schulte, TW., Mimnaugh, E. (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 17, 361-73
    1. Smith, D. F., Whitesell, L., Nair, S. C., Chen, S., Prapapanich, V., and Rimerman, R. A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 15, 6804-6812
    2. Whitesell, L., and Cook, P. (1996) Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid. Mo.l Endocrinol. 10, 705-712
    3. Pratt, W. B. (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase.
    Annu. Rev. Pharmacol. Toxicol. 37, 297-326
    4. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129-168
    5. Schulte, T.W., and Neckers, L. M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer. Chemother. Pharmacol. 42, 273-279
    6. Supko, J. G., Hickman, R. L., Grever, M. R., Malspeis, L. (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36, 305-315
    6. Kelland, L.R., Sharp, S. Y., Rogers, P.M., Myers, T. G., and Workman, P.
    (1999) DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino,
    17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.J Natl Cancer Inst. 91, 1940-1949
    7. Lees, M. J., and Whitelaw, M. L. (1999) Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Mol. Cell. Biol. 19, 5811-5822
    8. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 94, 471-480
    9. Chavany, C., Mimnaugh,. E., Miller, P., Bitton, R., Nguyen, P., Trepel, J., Whitesell, L., Schnur, R., Moyer, J., and Neckers, L. (1996) p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by
    benzoquinone ansamycins precedes depletion of p185erbB2.J. Biol. Chem. 271, 4974-4977
    10. Ochel, H. J., Schulte, T., Nguyen, P., Trepel, J., and Neckers, L. (1999) The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase.Mol. Genet. Metab. 66, 24-30
    11. Schulte, T. W., Blagosklonny, M., Ingui, C., and Neckers, L. (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of
    Raf-1-Ras association.J. Antibiot. (Tokyo) 48, 1021-1026
    12. Yamaki, H., Nakajima, M., Seimiya, H., Saya, H., Sugita, M., and Tsuruo, T. (1995) Inhibition of the association with nuclear matrix of pRB, p70 and p40 proteins along with the specific suppression of c-MYC expression by geldanamycin, an inhibitor of Src tyrosine kinase.J. Antibiot. (Tokyo) 48, 1021-1026
    13. Hirsch, S., Miskimins, R., and Miskimins, W. K. (1996) Mitogenic activation of the transferrin receptor gene promoter is modulated by inhibitors of tyrosine kinases and tyrosine phosphatases.Recept. Signal. Transduct. 6, 121-129
    14. Lawson, B., Brewer, J., and Hendershot, L. M. (1998) Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic
    reticulum (ER) chaperones via the ER stress pathway.J. Cell. Physiol. 174, 170-178
    15. Xiao, N., Callaway, C. W., Lipinski, C. A., Hicks, S. D., and DeFranco, D. B. (1999) Geldanamycin provides posttreatment protection against glutamate-induced oxidative toxicity in a mouse hippocampal cell line.J. Neurochem. 72, 95-101
    16. Kim, H. R., Kang, H., and Kim, H. D. (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB. Life. 48, 429-433
    17. Tavaria, M., Gabriele, T., Kola, I., and Anderson, R. L (1996) A hitchhiker's guide to the human Hsp70 family.Cell. Stress. Chaperones. 1, 23-28.
    18. Murakami, N., Mehta, P., and Elzinga, M. (1991). Studies on the distribution of cellular myosin with antibodies to isoform-specific synthetic
    peptides.FEBS Lett 278: 23-25.
    19. Hunt, C., and Morimoto, R. I. (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70.Proc. Natl. Acad. Sci. U. S .A .82, 6455-6459
    20. Wu, B. J., Kingston, R. E., and Morimoto, R. I. (1986) Human HSP70 promoter contains at least two distinct regulatory domains.Proc. Natl. Acad. Sci. U. S. A .83, 629-633
    21. Harrison, G. S., Drabkin, H. A., Kao, F. T., Hartz, J., Hart, I. M., Chu, E.H., Wu, B. J., and Morimoto, R. I. (1987) Chromosomal location of human genes encoding major heat-shock protein HSP70.Somat. Cell. Mol. Genet.13, 119-130
    22. Leung, T. K., Rajendran, M. Y., Monfries, C., Hall, C., and Lim, L. (1990) The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B') and isolation of its cDNA and genomic DNA.Biochem. J.267, 125-132
    23. Amin, J., Fernandez, M., Ananthan, J., Lis, J. T., and Voellmy, R. (1994) Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.J. Biol. Chem. 269, 4804-4811
    24. Arai, Y., Kubo, T., Kobayashi, K., Ikeda, T., Takahashi, K., Takigawa, M., Imanishi, J., and Hirasawa, Y. (1999) Control of delivered gene expression in chondrocytes using heat shock protein 70B promoter.J. Rheumatol. 26, 1769-1774
    25. Wong, H. R., and Wispe, J. R. (1997) The stress response and the lung.Am. J. Physiol. 273, L1-9
    26. Holmberg, C. I., Roos, P. M., Lord, J. M., Eriksson, J. E., and Sistonen, L. (1998) Conventional and novel PKC isoenzymes modify the heat-induced stress response but are not activated by heat shock. J. Cell. Sci.111, 3357-3365
    27. Ding, X. Z., Tsokos, G. C., and Kiang, J. G. (1998) Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity.FASEB. J.12, 451-459
    28. Hung, J. J., Cheng, T. J., Lai, Y. K., and Chang, M. D. (1998) Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells.J. Biol. Chem. 273, 31924-31931
    29. Kim, J., Nueda, A., Meng, Y. H., Dynan, W. S., and Mivechi, N. F. (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members.J. Cell. Biochem. 67, 43-54
    30. Kiang, J. G., Gist, I. D., and Tsokos, G. C. (2000) Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells.Mol. Cell. Biochem. 204, 169-178
    31. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680-685.
    32. Lee, W. C., Lin, K. Y., Chen, C. M., Chen, Z. T., Liu, H. J., and Lai, Y. K. (1991) Induction of heat-shock response and alterations of protein phosphorylation by a novel topoisomerase II inhibitor, withangulatin A, in 9L rat brain tumor cells.J. Cell. Physiol. 49, 66-76
    33. PH, O. F. (1975) High resolution two-dimensional electrophoresis of
    proteins.J. Biol. Chem. 250, 4007-4021
    34. Gross-Bellard, M., Oudet, P., and Chambon, P. (1973) Isolation of high-molecular-weight DNA from mammalian cells.Eur. J. Biochem. 36, 32-38
    35. Saiki, R. K., Gelfand, d. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science. 239, 487-491.
    36. Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156-159
    37. Chen, K. D., Chen, L. Y., Huang, H. L., Lieu, C. H., Chang, Y. N., Chang, M. D., and Lai, Y. K. (1998) Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells.J. Biol. Chem. 273, 749-755
    38. Roy, R. J., Gosselin, P., and Guerin, S. L. (1991) A short protocol for micro-purification of nuclear proteins from whole animal tissue.BioTechniques. 11, 770-777
    39. Hegde, R.S., Zuo, J., Voellmy, R., and Welch, W. J. (1995) Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A.J Cell Physiol, 165, 186-200
    40. Lee, Y. J., Berns, C. M., Erdos, G., Borrelli, M. J., Ahn, C. H., and Corry, P. M. (1994) Effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on HSP70 and HSP28 gene expression and thermotolerance development in human colon carcinoma cells.Biochem. Pharmacol. 48, 2057-2063
    41. Lee, Y. J., Berns, C. M., Erdos, G., and Corry, P. M. (1994) Effect of isoquinolinesulfonamides on heat shock gene expression during heating at 41 degrees C in human carcinoma cell lines.Biochem. Biophys. Res. Commun. 199, 714-719
    42. Lee, Y. J., Berns, C. M., Galoforo, S., Erdos, G., Cho, J. M., and Corry, P. M. (1995) Differential effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on alpha B-crystallin and hsp70 gene expression in murine cell lines.Biochem. Pharmacol. 50, 1149-1155
    43. Ohnishi, K., Wang, X., Takahashi, A., Matsumoto, H., Aoki, H., and Ohnishi, T. (1998). Effects of protein kinase inhibitors on heat-induced hsp72 gene expression in a human glioblastoma cell line.Cell. Signal. 10: 259-264.
    44. Osaki, J., Haneda, T., Kashiwagi, Y., Oi, S., Fukuzawa, J., Sakai, H., and Kikuchi, K. (1998) Pressure-induced expression of heat shock protein 70 mRNA in adult rat heart is coupled both to protein kinase A-dependent and protein kinase C-dependent systems.J. Hypertens. 16, 1193-1200
    45. Ding, X. Z., Smallridge, R. C., Galloway, R. J., and Kiang, J. G. (1996) Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca2+]i.J. Invest. Med. 44, 144-153
    46. Kiang, J. G., Gist, I. D., and Tsokos, G. C. (1998) Cytoprotection and regulation of heat shock proteins induced by heat shock in human breast cancer T47-D cells: role of [Ca2+]i and protein kinases.FASEB. J. 12, 141571-141579
    47. Ding, X. Z., Tsokos, G. C., and Kiang, J. G. (1997) Heat shock factor-1 protein in heat shock factor-1 gene-transfected human epidermoid A431 cells requires phosphorylation before inducing heat protein-70 production.J. Clin. Invest. 99, 136-143
    48. Erdos, G., and Lee, Y. J. (1994) Biochem. Biophys. Res. Commun. 202, 476-483
    49. Ohnishi, K., Wang, X., Takahashi, A., Matsumoto, H., Aoki, H., and Ohnishi, T. (1998) Effects of protein kinase inhibitors on heat-induced hsp72 gene expression in a human glioblastoma cell line.Cell. Signal. 10, 259-264
    50. Ohnishi, K., Wang, X., Takahashi, A., Matsumoto, H., and Ohnishi, T. (1999) The protein kinase inhibitor, H-7, suppresses heat induced activation of heat shock transcription factor 1.Mol. Cell. Biochem. 197, 129-135
    51. Stephanou, A., Isenberg, D. A., Nakajima, K., and Latchman, D. S. (1999) Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp70 and Hsp90beta gene promoters.J. Biol. Chem. 274, 1723-1728
    52. Hatayama, T., and Hayakawa, M. (1999) Differential temperature dependency of chemical stressors in HSF1-mediated stress response in mammalian cells.Biochem. Biophys. Res. Commun. 265, 763-769
    53. Yang, S.H., Nussenzweig, A., Li, L., Kim, D., Ouyang, H., Burgman, P., and Li G. C. (1996) Modulation of thermal induction of hsp70 expression by Ku autoantigen or its individual subunits.Mol Cell Biol, 16, 3799-3806
    54. Kim, D., Ouyang, H., Yang, S.H., Nussenzweig, A., Burgman, P., and Li, G. C.
    (1995) A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen.J Biol Chem, 270, 15277-15284
    55. Cotto, J. J., Kline, M., and Morimoto, R. I. (1996) Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors.J. Biol. Chem. 271, 3355-3358

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE