研究生: |
詹政霖 |
---|---|
論文名稱: |
基於共變異數矩陣假設檢定的多迴路控制器性能評估與監控 Multivariable controller performance assessment and monitoring using hypothesis test on covariance matrices |
指導教授: | 姚遠 |
口試委員: |
汪上曉
陳奇中 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 共變異數矩陣 、假設檢定 、多迴路 、控制器性能評估 、控制器性能監控 |
外文關鍵詞: | Multivariable, controller performance assessment, controller performance monitoring, hypothesis test, covariance matrices |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業製程中,越來越多控制器應用到產品製程上,為了確保產品品質,希望控制器能保持在一定的性能水準,因此控制器性能的評估與監控受到學者們的重視,一般而言,使用輸出誤差的變異數來當作控制系統監控的統計量,然而只看當前控制器輸出誤差的變異數是否發生改變是不夠的,這只能看出控制系統是否發生改變,提供的信息並不完整,無法提取完整的信息,另外還需要透過統計量與最好或滿足工程需要的控制器性能之統計量進行比較,判斷控制器是否有改進的空間,而這個控制系統的性能指標通常是一個相對的數值,在Harris(1989)發表奠基性文章也就是最小變異數控制基準(minimum variance control benchmark MVC)以後,此領域開始蓬勃發展,多篇的研究文獻顯示在這領域取得了重大的成果。
在多變數系統中,共變異數矩陣(Covariance Matrix)數值之間的關係提供了許多可以分析的資訊,因此監控共變異數矩陣的改變,是十分重要的事情,Harris首先把MVC從單變數引入到多變數系統,透過共變異數矩陣的數值來提取製程信息,此外還有一些學者發展其他監控共變異數矩陣的方法。然而上述的方法並沒有將整個共變異數矩陣的信息考慮進去,為了提取共變異數矩陣整體的信息,本文採用對共變異數矩陣的相等性進行假設檢定,透過比較兩樣本之共變異數矩陣差異的方式,不只把考慮變數本身的變化,同時也把變數間變化的程度也考慮進去,抓取矩陣整體的信息。並且導入滑動窗口理論,透過不同的窗口大小,達到線上監控控制性能的目的。
本文透過即時性的數據採集方式與三種數據假設檢定準則,配合不同的製程
與不同的目的,希冀達到一個全面性的控制器性能之評估與監控,並依據所得的統計量結果,用來建立與管制圖類似之圖表,讓一般使用者與工程師都能夠輕鬆使用。
[1].T.J. Harris, C. Seppala, L.D. Desborough, A review of perfor-mance monitoring and assessment techniques for univariate andmultivariate control systems, Journal of Process Control, vol. 9, pp. 1–17, 1999.
[2].D.J. Kozub, Control system monitoring and challenges, in: Chemical Process Control – CPC V, Tuscon, Arizona, pp. 83–96, 1997.
[3].M. Jelali, An overview of control performance assessment technology and industrial applications, Control Eng. Practice, vol. 14, pp. 441–466, 2006.
[4].T.J. Harris, C.T. Seppala, Recent developments in control system monitoring and assessment techniques, in: Chemical Process Control – CPC VI, Tuscon, Arizona, pp. 208–222, 2002.
[5].P. Sliwa, and W. Schmid, Monitoring the Cross-Covariances of a Multivariate Time Series, Metrika, vol. 61, pp. 89–115, 2005.
[6].K.A. Hoo, M.J. Piovoso, P.D. Schnelle, D.A. Rowan, Process and control system monitoring: overview with industrial applications, Int. J. Adaptive Control Signal Process, vol. 17, pp. 635–662, 2003.
[7].B. Huang, S.L. Shah, Performance Assessment of Control Loops: Theory and Applications Advances in Industrial Control, Springer-Verlag, London, Great Britain, 1999.
[8].K.J. Astrom, Introduction to stochastic control theory. Academic Press, New York, 1970
[9].W.R. DeVries, S. Wu, Evaluation of process Control Effectiveness and Diagnosis of Variation in Paper Basis Weight Via Multivariate Time-series Analysis. IEEE Transactions on Automatic Control, vol. 23, pp. 702-708, 1978.
[10].L.D. Desborough, T.J. Harris, Performance Assessment Measures for Univariate Feedback Control. Canadian Journal of Chemical Engineering, vol. 70, pp. 1186-1197, 1992.
[11].C.A. McNabb, S.J. Qin, Projection based MIMO control performance monitoring–I. Covariance monitoring in state space, Journal of Process Control, vol. 13, pp. 739–757, 2003
[12].C.A. McNabb, S.J. Qin, Projection based MIMO control performance monitoring– II. Measured Disturbances and Set point Change, Journal of Process Control, vol. 15, pp. 89-102, 2005
[13].B. Huang, S.L. Shah Good, bad or optimal? performance assessment of MIMO processes, Automatic., vol. 33(6), pp. 1175–1183, 1997.
[14].M.L. Tyler, M. Morari, Performance Assessment for Unstable and Nonminimum -phase Systems. In Preprints the International Federation of Automatic Control Workshop On-line Fault Detection Chemical Process Industries, Newcastle Upon Tyne ,UK, 1995.
[15].L. Desborough, T.J. Harris, Performance assessment measures for univariate feedforward–feedback control, Canadian Journal of Chemical Engineering, vol. 71, pp. 605–616, 1993.
[16].B. Huang, S.L. Shah, Practical issues in multivariable feedback control performance assessment, Journal of Process Control, vol. 8, pp. 421–430, 1998.
[17].C. Y. Kramer, and D. R. Jensen, Fundamentals of multivariate analysis part II. Inference about two treatments. Journal of Quality Technology, vol. 1, pp. 189-204, 1969.
[18].T.J. Harris, F. Boudreau, J.F. MacGregor, Performance assessment of multi- variable feedback controllers, International Federation of Automatic Control, vol. 32(11), pp. 1505–1518, 1996.
[19].B. Huang, S.L. Shah, R. Miller, Feedforward plus feedback controller perfor- mance assessment of MIMO systems, IEEE Trans. Control Systems Technology , vol. 8(3), pp. 580–587, 2000.
[20].J.F. MacGregor, T. Kourti, Statistical process control of multivariate processes, International Federation of Automatic Control, vol. 3(3), pp. 403–414, 1995.
[21].M.J. Grimble, Restricted structure controller tuning and assessment, IEE Proc. Control Theory Appl., vol. 149, pp. 8–16, 2002.
[22].S.L. Shah, R. Patwardhan, B. Huang, Multivariate controller performance
analysis: methods, applications and challenges, in: AICHE Symposium Series, Issue, vol. 326, pp. 190–207, 2002.
[23].B. Huang, Multivariate statistical methods for control loop performance assess- ment, Ph.D. Thesis, Department of Chemical Engineering, Universityof Alberta, Canada, 1997.
[24].J. Yu, S.J. Qin, Statistical MIMO control system monitoring, part I: data-driven covariance benchmark, Journal of Process Control, vol. 18(3–4), pp. 277–296, 2008.
[25].J. Yu, S.J. Qin, Statistical MIMO control system monitoring, part II: perfor- mance diagnosis, Journal of Process Control, vol. 18(3–4), pp. 297–319, 2008.
[26].X. Tian, G. Chen, and S. Chen, A data-based approach for multivariate model predictive control performance monitoring. Neurocomputing, vol. 74(4), pp. 588–597, 2011.
[27].R.S. Patwardhan, S.L. Shah, Issues in performance diagnostics of model-based
controllers, Journal of Process Control, vol. 12(3), pp. 413–427, 2002.
[28].J. Chen, W.Y. Wang, PCA-ARMA-based control charts for performance moni- toring of multivariable feedback control. Industrial and Engineering Chemistry Research. , vol. 19, pp. 2228–2241, 2010
[29].L.K. Chan, and J. Zhang , Cumulative sum control charts for the covariance matrix. Statistica Sinica, vol. 11, pp. 767-790, 2001.
[30].M.R. Reynolds, and G.Y. Cho , Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix, Journal of Quality Technology, vol. 38, pp. 230–253, 2006.
[31].B.P. Korin, On the distribution of a statistic used for testing a covariance matrix. Biometriku, vol. 55, pp. 171-178, 1698.
[32].D.M. Hawkins, and E.M. Maboudou-Tchao, Multivariate Exponentially Weight- ed Moving Covariance Matrix. Technometrics, vol. 50, pp. 155-166, 2008.
[33].D. C. Montgomery, and H.M. Wadsworth, Some Techniques for Multivariate Quality Control Applications , in Transactions of the ASQC, Washington, DC. 1972
[34].F. A. Alt, Multivariate Quality Control, in The Encyclopedia of Statistical Sciences, vol. 6, pp. 110–122, New York: Wiley, 1984
[35].Y. Peng, M. Kinnaert , Explicit solution to the singular lq regulation problem. IEEE Trans. Control Systems Technology, vol. 37, pp. 633–636, 1992
[36].M. Jelali, Control Performance Management in Industrial Automation, London, Springer,2013