簡易檢索 / 詳目顯示

研究生: 陳瑋瑄
Chen, Wei-Hsuan
論文名稱: 使用紅外線測溫儀量測系統研究矩形微流道內熱流發展區之對流熱傳
Using infrared thermography to study combined development in the entrance region of a rectangular microchannel
指導教授: 潘欽
Pan, Chin
口試委員: 潘欽
林清發
陳紹文
李進得
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 微流道紅外線測溫發展區對流熱傳
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究以紅外線測溫儀探討三氧化二鋁-水的奈米流體在矩形微流道內、熱流發展區內的強制對流熱傳遞效益與流量間及奈米顆粒濃度的關係。實驗採用鋁合金基材做為流道材質,而流道之長、寬、高分別為22mm、1.5mm及0.3mm,上方覆蓋一5mm厚的鍺玻璃做為紅外線測溫儀的可視化視窗。紅外線測溫儀可以提供高靈敏且非侵入式的空間溫度量測方法。本實驗建置一紅外線溫度量測系統,可直接觀測微流道內流體的溫度分佈,並且藉由T型熱電偶完成紅外線測溫儀量測目標物的溫度校正。另外,本研究以乙醇和純水的實驗分析結果與Lee與Garimella所發表的局部紐賽數預測式比較,其趨勢一致,可進一步說明此實驗量測系統之可信度與可行性與可信度。
    本研究使用此紅外線溫度量測方法,探討奈米流體在層流下,微流道內熱發展區的對流熱傳情形。研究結果顯示,當奈米流體的濃度越高且流量越大時,其熱傳效果越好,熱傳增益值也較高。在奈米顆粒之質量分率為1wt%、質量流率為17g/min時,具有最大的熱傳增益值為1.64。


    Microchannel heat sink with its high heat transfer area density and potentially high heat transfer coefficient has been proposed for applications with high heat fluxes. The objective of this study is to investigate single-phase convection in the combined developing region of a rectangular microchannel. An infrared thermography provides an effective approach for non-intrusive and spatio-temporal measurement of temperature. The entrance region, where the heat transfer coefficient is higher than that of the fully developed region, is of particular interest for microchannel cooling applications. The present study establishes an innovative benchmark experimental measurement uaing an infrared thermography. The experiments are conducted on a rectangular cross-section microchannel made of aluminum alloy 6061 with dimensions 22mm×1.5mm×0.3mm and covered on the top with a 5mm thick infrared transmitting germanium glass window. Consequently, the temperature distribution in the channel can be observed via the window directly. In order to measure the temperature correctly, all of the aluminum channel surface substrate was anodized such that emissivity can be increased to 0.95. The results show that the temperature distribution can be measured correctly using infrared thermography, and the local heat transfer coefficient can be acquired successfully. In order to validate the experimental system for measuring the local heat transfer coefficient, preliminary experiments with ethanol were performed. Finally, the results of the Lee & Garimella are compared with present experimental from the nusselt number with the axial positions.
      Furthermore, this thesis reports an experimental method on the convective heat transfer of nanofluids. The nanofluid made of Al2O3 nanoparticles and de-ionized water, flowing through a aluminum rectangular microchannel in the laminar flow region. The results demonetrate considerable enhancement of convective heat transfer of the different concentrations of nanofluids.

    目錄 頁次 摘要 I Abstract II 致謝 IV 目錄 V 表目錄 IX 圖目錄 X 符號說明 XII 第一章 緒論 1 1.1. 前言 1 1.2. 紅外線量測原理簡介 4 1.2.1. 紅外線的定義與歷史 4 1.2.2. 黑體輻射理論 6 1.2.3. 克希荷夫定律 7 1.2.4. 普朗克定律 8 1.2.5. 史蒂芬-波茲曼定律 10 1.2.6. 韋恩位移定律 11 1.2.7. 吸收率、放射率與穿透率 11 1.3. 紅外線測溫儀的量測原理與機制 14 1.4. 研究動機與目的 16 1.5. 研究方法 18 1.6. 論文架構 19 第二章 文獻回顧 21 1.1. 紅外線測溫儀之溫度量測相關文獻 21 1.2. 奈米流體相關文獻 27 第三章 實驗系統與方法 32 3.1. 實驗儀器與材料 32 3.1.1. 測試段與加熱模組 32 3.1.2. 紅外線測溫儀 34 3.1.3. 其它實驗設備與材料 35 3.2. 溫度量測校準與量測系統建立 38 3.2.1. 實驗系統環路 38 3.2.2. 實驗方法與步驟 39 3.3. 奈米流體之熱傳效益實驗 41 3.3.1. 實驗系統環路 41 3.3.2. 實驗方法與步驟 42 3.3.3. 奈米流體的製備方法 44 第四章 理論分析 46 4.1. 工作流體的熱物理性質 46 4.2. 熱傳分析 53 4.3. 實驗不準度分析 56 第五章 結果與討論 59 5.1. 溫度校準實驗 59 5.2. 熱傳結果分析 62 5.2.1. 乙醇 62 5.2.2. 奈米流體 67 第六章 結論與建議 81 6.1. 結論 81 6.2. 未來研究與建議 83 第七章 參考文獻 85 附錄A 紅外線測溫儀產品資訊 95

    “http://www.gticom.com.tw/,” 虹軒科技有限公司, 2012. [線上].
    劉建學, 實用近紅外線光譜分析技術, 科學出版社, 2008.
    A. Rogalski, K. Chrzanowski, "Infrared devices and techniques," Opto electronics review, vol. 10, pp. 111-136, 2002.
    M. Vollmer, Klaus P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications, WILEY-VCH, 2010.
    A. Rogalski, K. Chrzanowski, "Infrared devices and techniques," Opto-electronics review, vol. 2, no. 10, pp. 111-136, 2002.
    賴耿陽, 紅外線工學基礎應用, 台灣復文興業股份有限公司, 1995.
    F. P. Incropera, D. P. DeWitt, . L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, Sixth Edition, 2006.
    王大庚,鄧力夫,曹培熙, 基本近代物理學, 徐氏文教基金會, 2009.
    F. S. incorporation, "R&D software suite 3.1 user’s manual," Publ. No. T559132, 2012.
    F. ResearchIR, “FLIR R&D 軟體1.2版使用說明書,” Publ. No. T559464 Rev. a449-traditional chinese (ZH-TW), 2010.
    J. Habera, M. N. Kashida, N. Borhanib, J. Thomeb, U. Krtschilc, A. Renkena, L. K. Minskera,, "Infrared imaging of temperature profiles in microreactors for fast and exothermic reaction," Chemical Engineering Journal, vol. 214, pp. 97-105, 2013.
    J. M. Lloyd, "Thermal imaging system," Optical physics and engineering, 1975.
    H. Kim, J. Buongiorno, "Detection of liquid–vapor–solid triple contact line in two-phase heat transfer phenomena using high-speed infrared thermometry," International Journal of Multiphase Flow, vol. 37, pp. 166-172, 2011.
    D. Brutin , B. Sobac, F. Rigollet, C. L. Niliot, "Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface," Experimental Thermal and Fluid Science, vol. 35, pp. 521-530, 2011.
    Vadiraj A. Hemadri, A. Gupta, S. Khandekar, , "Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations," Applied Thermal Engineering, vol. 31, pp. 1332-1346, 2011.
    B. Mehta, S. Khandekar, "Experimental Thermal and Fluid Science," Experimental Thermal and Fluid Science, vol. 42, pp. 219-229, 2012.
    P. S. Lee, S. V. Garimella, "Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios," International journal of heat and mass transfer, vol. 49, pp. 3060-3067, 2006.
    H. Y. Li, G. L. Tsai, S. M. Chao, Y. F. Y, "Measurement of thermal and hydraulic performance of a plate-fin heat sink with a shield," Experimental thermal and fluid science, vol. 42, pp. 71-78, 2012.
    G. Hetsroni, A. Mosyak, E. Pogrebnyak, R. Rozenblit, "Infrared temperature measurements in micro-channels and micro-fluid systems," International Journal of Thermal Sciences, vol. 50, pp. 853-868, 2011.
    M. C. Díaz, J. Schmidt, "Experimental investigation of transient boiling heat transfer in microchannels," International Journal of Heat and Fluid Flow, vol. 28, pp. 95-102, 2007.
    T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C. M. Fager, T. Kotiaho, A. Pursula, "Temperature modeling and measurement of an electrokinetic separation chip," Microfluidics and Nanofluidics, vol. 5, pp. 479-491, 2008.
    Stephen U. S. Choi, J. A. Eastrnan, "Enhancing thermal conductivity of fluids with nanoparticles," in ASME International mechanical engineering congress exposition, San Francisco, CA, 1995.
    S. M. You, J. H. Kim, K. H. Kim, "Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer," Applied Physics Letters, vol. 83, pp. 3374-3376, 2003.
    P. Vassallo, R. Kumar, S. Damico, "Pool boilion heat transfer experiments in silica-water nano-fluids," International Journal of Heat and Mass Transfer, vol. 47, pp. 407-411, 2004.
    B. X. Wang, L. P. Zhou, X. F. Peng, "A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles," International Journal of Heat and Mass Transfer, vol. 46, pp. 2665-2672, 2003.
    S.S. Mallick, A. Mishra, L. Kundan, "An investigation into modelling thermal conductivity for alumina–water nanofluids," Powder Technology, vol. 233, pp. 234-244, 2013.
    T. C. Hung, W. M. Yan, X. D. Wang, C. Y. Chang, "Heat transfer enhancement in micro channel heat sink using nanofluid," International Journal of Heat and Mass Transfer, vol. 55, pp. 2559-2570, 2012.
    M. Mital, "Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels," Applied Thermal Engineering, vol. 50, pp. 429-436, 2013.
    D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong, S. Moon, "Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions," Current Applied Physics, vol. 9, pp. 119-123, 2009.
    K. B. Anoop, T. Sundararajan, S. K. Das, "Effect of particle size on the convective heat transfer in nanofluid in the developing region," International journal of heat and mass transfer, vol. 52, pp. 2189-2195, 2009.
    P. R. K. Shah, "Proc. 3rd National heat mass transfer conference," in Indian institute of technology, Bombay. 1. paper HMT -11 -75.
    M. Kalteh, A. Abbassi, M. S. Avval, A. Frijns, Anton Darhuber, J. Harting, "Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink," Applied Thermal Engineering, vol. 36, pp. 260-268, 2012.
    S. Z. Heris, S. G. Etemad, M. N. Esfahany, "Experimental investigation of oxide nanofluids laminar flow convective heat transfer," International communications in heat and mass Transfer, vol. 33, pp. 529-535, 2006.
    S. Z. Heris, M. N. Esfahany, S. G. Etemad, "Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube," International Journal of Heat and Fluid Flow, vol. 28, pp. 203-210, 2007.
    I. M. Mahbubul, S. A. Fadhilah, R. Saidur, K. Y. Leong, M. A. Amalina,, "Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants," International Journal of Heat and Mass Transfer, vol. 57, pp. 100-108, 2013.
    P. Naphon, L. Nakharintr, "Heat transfer of nanofluids in the mini-rectangular fin heat sinks," International Communications in Heat and Mass Transfer, vol. 40, pp. 25-31, 2013.
    U. Rea, T. McKrell, L. W. Hu, J. Buongiorno, "Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids," International Journal of Heat and Mass Transfer, vol. 52, pp. 2042-2048, 2009.
    C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, "Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study," International Journal of Thermal Sciences, vol. 49, pp. 1345-1353, 2010.
    X. Wang, X. Xu, S. U. S. Choi,, "Thermal conductivity of nanopariticle- fluid mixture,," Journal of thermophysics and heat transfer, vol. 13, pp. 474-480, 474-480 1999.
    S. E. B. Maiga, C. T. Nguyen, "Heat transfer behaviors of nanofluids in a uniformly heated tube,," Superlattices and microstructures, vol. 35, pp. 543-557, 2004.
    S. K. Das, N. Putra, P. Thiesen, W. Roetzel, "Temperature dependence of thermal conductivity enhancement for nanofluids," ASME journal of heat transfer , vol. 125, pp. 567-574, 2003.
    G. Roy, C. T. Nguyen, D. Doucet, S. Suiro, T. Mar, "Temperature dependent thermal conductivity evaluation of alumina based nanofluids," in Proceedings of the 13th international heat transfer conference, 2006.
    G. A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, "Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure," International Journal of Thermal Sciences, vol. 66, pp. 51-62, 2013.
    J. C. Maxwell, A Treatise on Electricity and Magnetism 2nd Edition, Oxford Univ. Press, Cambridge, 1904.
    A. Einstein, "Eine neue bestimmung der molekuldimensionen," Annalen der Physik, vol. 19, pp. 289-306, 1906.
    M. Corcione, "Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids," Energy conversion and management, vol. 52, pp. 789-793, 2011.
    R. J. Moffat, "Describing the uncertainties in experimental results," Experimental thermal and fluid science, vol. 1, pp. 3-17, 1988.
    Frank P. Incropera, David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine, Fundamentals of heat and mass transfer, Wiley six edition, 2007.
    R. L. Hamilton, O. K. Crosser, "Thermal conductivity of heterogeneous two component systems," Ind. Eng. Chem. Fundam. , vol. 1, pp. 187-191, 1962.
    H. C. Brinkman, "The viscosity of concentrated suspensions and solutions," J. Chem. Phys., vol. 20, p. 571, 1952.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE