研究生: |
谷祖賢 Tsu-Hsien Ku |
---|---|
論文名稱: |
導電高分子在奈米電極間電荷傳導特性之研究 Study of Charge Transport in Conducting Polymer between Nanoelectrodes |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 原子力顯微術 、奈米電極 、導電高分子 、電荷載子遷移率 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們結合了一般的金屬剝除(lift-off)製成,與原子力顯微術(atomic force microscopy)的奈米微影技術,輕易地就製作出可任意調變尺寸的金奈米電極,並將此電極運用在poly [2-methoxy, 5-(2′-ethyl-hexoxy)-1, 4-phenylenevinylene] (MEH-PPV)導電高分子的電洞傳導特性之研究。
我們以滴注法(drop-casting)來成膜,實驗結果顯示,濃度稀薄(1.5 mg/l)的樣品,呈現出空間電荷限制電流(space charge limited current)的傳輸現象,並且由Poole-Frenkel law所估算出的無電場下電荷載子遷移率(zero-field mobility)大約在10□6~10□3 cm2/V□s,要比先前曾發表過的量測結果,大上一到四個數量級,但電場係數(electric field coefficient)約等於104 V/cm,卻與先前的結果相近。除此之外,還觀察到電荷載子遷移率,會隨著電極間距的縮小而增加。相對地,濃度稠密(1.5 mg/ml)的樣品,則遵守著歐姆定律(Ohm’s law),並且計算出大約等於10 S/cm的驚人的導電率。
我們電性量測的實驗,在常溫下,分別在大氣或是惰性氣氛環境下進行,最終驗證出,由於水平式奈米電極的效應,使得導電高分子的電荷傳輸特性大為地提升,更重要的是,觀察到接近以MEH-PPV單一高分子鏈,傳輸的電荷載子遷移率。
We successfully fabricate gold nanoelectrodes with controllable dimensions by a combination of lift-off process and atomic force microscopy nanolithography. By making use of these nanoelectrodes, we study the hole transport in the conducting polymer MEH-PPV. It is found that dilute samples (1.5 mg/l) reveal space-charge-limited conduction, and a hole mobility obtained at a gap of 70 nm is as high as 1 cm2/Vs at a field of 9×105 V/cm. This value is comparable to the hole mobility of single MEH-PPV chains. Furthermore, we also observe mobility enhancement as the gap is reduced. On the other hand, high-concentration samples (1.5 mg/ml) present even better electrical properties and obey the Ohm’s law. We find amazing conductivities calculated to be around 10 S/cm. The unprecedented electrical behavior observed in the present study is believed to be due to combined effects of chain alignment along the substrate and nanoscale gaps.
1. Nobel e-Museum web: http://www.nobel.se/chemistry/laureates/2000/
2. 陳壽安,物理雙月刊 第二十三卷二期,312 (2001).
3. A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
4. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
5. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, R656 (1997).
6. M. Zhu, T. Cui, and K. Varahramyan, Microelectron. Eng. 75, 269 (2004).
7. G. Wang, J. Swensen, D. Moses, and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).
8. D. McBranch, I. H. Campbell, D. L. Smith, and J. P. Ferraris, Appl. Phys. Lett. 66, 1175 (1995).
9. C. Y. Yang, F. Hide, M. A. Diaz-Garcia, A. J. Heeger, and Y. Cao, Polymer 39, 2299 (1998).
10. K. L. Tzeng, H. F. Meng, M. F. Tzeng, Y. S. Chen, C. H. Liu, S. F. Horng, S. M. Chang, C. S. Hsu, and C. C. Chi, Appl. Phys. Lett. 84, 619 (2004).
11. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
12. D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
13. M. Tammer and A. P. Monkman, Adv. Mater. 14, 210 (2002).
14. A. Ltaief, A. Bouazizi, J. Davenas, R. B. Chaabane, and H. B. Ouada, Synth. Met. 147, 261 (2004).
15. R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature 392, 54 (1998).
16. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
17. J. Kalinowski, J. Phys. D: Appl. Phys. 32, R179 (1999).
18. F. Huang, L. Hou, H. Wu, X. Wang, H. Shen, W. Cao, W. Yang, and Y. Cao, J. Am. Chem. Soc. 126, 9845 (2004).
19. H. Yan, B. J. Scott, Q. Huang, and T. J. Marks, Adv. Mater. 16, 1948 (2004).
20. C. J. Hung, J. Mater. Sci. Lett. 22, 1423 (2003).
21. J. Kim, J. Lee, C. W. Han, N. Y. Lee, and I.-J. Chung, Appl. Phys. Lett. 82, 4328 (2003).
22. A. Dodabalapur, L. Torsi, and H. E. Katz, Science 268, 270 (1995).
23. D. Kinpp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).
24. Z. L. Li, S. C. Yang, H. F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. F. Horng, C. S. Hsu, L. C. Chen, J. P. Hu, and R. H. Lee, Appl. Phys. Lett. 84, 3558 (2004).
25. Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, and J. I. Han, Jpn. J. Appl. Phys. 43, 3605 (2004).
26. H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
27. T. G. Backlund, H. G. O. Sandberg, R. Osterbacka, H. Stubb, T. Makela, and S. Jussila, Synth. Met. 148, 87 (2005).
28. Y. Xu and P. R. Berger, J. Appl. Phys. 95, 1497 (2004).
29. M. M.-Torrent, D. den Boer, M. Durkut, P. Hadley, and A. P. H. J. Schenning, Nanotechnology 15, S265 (2004).
30. M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431 (2002).
31. H. Yanagi and Y. Kawai, Jpn. J. Appl. Phys. 43, L1575 (2004).
32. S. Scheinert, T. Doll, A. Scherer, G. Paasch, and I. Horselmann, Appl. Phys. Lett. 84, 4427 (2004).
33. Y. Chen, W. W. Zhu, S. Xiao, and I. Shin, J. Vac. Sci. Technol. A 22, 768 (2004).
34. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
35. T. Sakanoue, E. Fujiwara, R. Yamada, and H. Tada, Appl. Phys. Lett. 84, 3037 (2004).
36. M. Ahles, A. Hepp, R. Schmechel, and H. von Seggern, Appl. Phys. Lett. 84, 428 (2004).
37. I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc. 137, 3052 (1990).
38. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, J. Power Sources 47, 89 (1994).
39. H. Shi, Electrochim. Acta 41, 1633 (1996).
40. A. Lewandowski, M. Zajder, E. Frackowiak, and F. Beguin, Electrochim. Acta 46, 2777 (2001).
41. W.-C. Chen, T.-C. Wen, and H. Teng, Electrochim. Acta 48, 641 (2003).
42. W.-C. Chen and T.-C. Wen, J. Power Sources 117, 273 (2003).
43. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000).
44. S. C. Jain, T. Aernout, A. K. Kapoor, V. Kumar, W. Geens, J.Poortmans, and R. Mertens, Synth. Met. 148, 245 (2005).
45. Y. Sakurai, H.-S. Jung, T. Shimanouchi, T. Inoguchi, S. Morita, R. Kuboi, K. Natsukawa, Sens. Actuators B 83, 270 (2002).
46. M. Atreya, S. Li, E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, and W. Huang, Polym. Degrad. Stab. 65, 287 (1999).
47. K. Tada and M. Onoda, J. Appl. Phys. 86, 3134 (1999).
48. I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
49. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
50. J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Malliaras, S. A. Carter, and L. Bozano, Synth. Met. 111□112, 289 (2000).
51. D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86, 5116 (1999).
52. Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
53. A. Rose, Phys. Rev. 97, 1538 (1955).
54. H. C. F. Martens, J. N. Huiberts, P. W. M. Blom, Appl. Phys. Lett. 77, 1852 (2000).
55. P. W. M. Blom, H. C. F. Martens, J. N. Huiberts, Synth. Met. 121, 1621 (2001).
56. K. C. Kao and W. Hwang, Electrical Transport in Solids (1981).
57. A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
58. D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, Synth. Met. 138, 299 (2003).
59. H.-N. Lin, H.-L. Lin, S.-S. Wang, L.-S. Yu, G.-Y. Perng, S.-A. Chen, and S.-H. Chen, Appl. Phys. Lett. 81, 2572 (2002).
60. M. Gailberger and H. Bassler, Phys. Rev. B 44, 8643 (1991).
61. C. H. Tan, A. R. Inigo, W. Fann, P.-K. Wei, G.-Y. Perng, and S.-A. Chen, Org. Electron. 3, 81 (2002).
62. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 74, 1132 (1999).
63. H. Bassler, Phys. Stat. Sol. (b) 175, 15 (1993).
64. Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
65. S. V. Rakhmanova and E. M. Conwell, Synth. Met. 116, 389 (2001).
66. 林鶴南、李龍正、劉克迅,科儀新知 第十七卷三期,12 (1995).
67. H.-N. Lin, S.-H. Chen, S.-T. Ho, P.-R. Chen, and I-N. Lin, J. Vac. Sci.Technol. B 21, 916 (2003).
68. S.-T. Ho, Y.-H. Chang, and H.-N. Lin, J. Appl. Phys. 96, 3562 (2004).
69. H.-N. Lin, Y. H. Chiou, B.-M. Chen, H.-P. D. Shieh, and C.-R. Chang, J. Appl. Phys. 83, 4997 (1998).
70. R. Buzio, C. Boragno, and U. Valbusa, Wear 254, 981 (2003).
71. Z. Wei, C. Wang, and C. Bai, Langmuir 17, 3945 (2001).
72. M. Cavallini, M. Facchini, M. Massi, and F. Biscarini, Synth. Met. 146, 283 (2004).
73. K. W. Guarini, C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20, 2788 (2002).
74. P. B. Fischer and S. Y. Chou, Appl. Phys. Lett. 62, 2989 (1993).
75. P. Ruchhoeft, J. C. Wolfe, and R. Bass, J. Vac. Sci. Technol. B 19, 2529 (2001).
76. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
77. M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 6, 293 (1988).
78. Q. Li, J. Zheng, and Z. Liu, Langmuir 19, 166 (2003).
79. J.-H. Hsu, H.-W. Lai, H.-N. Lin, C.-C. Chuang, and J.-H. Huang, J. Vac. Sci. Technol. B 21, 2599 (2003).
80. R. Magno and B. R. Bennett, Appl. Phys. Lett. 70, 1855 (1997).
81. Y. Kim and C. M. Lieber, Science 257, 375 (1992).
82. J.-H. Hsu, C.-Y. Lin, and H.-N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004).
83. A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, R. Faraci, F. Evangelisti, and C. Nicolini, Nanotechnology 10, 458 (1999).
84. E. Dubois and J.-L. Bubbendorff, Solid-State Electron. 43, 1085 (1999).
85. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, Appl. Phys. Lett. 61, 2293 (1992).
86. M. Ara, H. Graaf, and H. Tada, Appl. Phys. Lett. 80, 2565 (2002).
87. M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994).
88. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996).
89. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
90. N. S. Murthy and H. Minor, Polymer 31, 996 (1990).
91. S. Roth, One-Dimensional Metals; VCH: Weinheim, (1995).