研究生: |
張庭偉 Chang, Ting-Wei |
---|---|
論文名稱: |
直接影像觀察與X光光電子影像分析鈣鈦礦 碘離子在電場下之遷移現象 Direct visualization and XPS mapping of iodide migration in organo-halide perovskite assisted by electrical field |
指導教授: |
楊耀文
Yang, Yaw-Wen |
口試委員: |
陸大安
Luh, Dah-An 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 鈣鈦礦 、離子遷移 |
外文關鍵詞: | perovskite, ion migration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們將介紹一下有機鹵化物鈣鈦礦太陽能電池,並將不同鹵化物含量所製備而成的薄膜材料分別為MAPbI3、MAPbI2Br、MAPbIBr2以及MAPbBr3,放置於濕潤與乾燥氮氣環境下施加電場後利用光學顯微鏡和原子力顯微鏡觀察鈣鈦礦薄膜的形貌變化。接著運用X光光電子能譜測量薄膜的化學成分,其中特別強調I 3d,Pb 4f和Br 3d,因為已知在電場影響下增強離子的遷移現象以及在濕潤環境下其降解速率愈快。最後利用一維XPS影像來繪製跨越電極之間的離子分佈,從我們的研究結果得知,四種類型的鈣鈦礦膜中的碘離子遷移,從光學顯微鏡觀察到移動軌跡生動地證明,隨著I / Br比例不同和施加電場的環境而產生變化,因此較高的溴化物含量和乾燥環境可以顯著延緩鹵化物遷移,這是由於溴離子使穩定性提高。
In this thesis, we will report on an investigation of how the organo-halide perovskite solar cell, thin-film materials of varied halide content, MAPbI3, MAPbI2Br, MAPbIBr2, MAPbBr3, behave under the applied electrical field and under different controlled environments of dry and moist nitrogen atmosphere. The morphology of the film of different length scale was examined with optical microscope (OM) and atomic force microscope (AFM). The chemical composition of the films was measured with X-ray photoemission spectroscopy (XPS) with particular emphasis given to I 3d, Pb 4f, and Br 3d because of the known migration of ionic species that is enhanced under the influence of electrical field and accelerated decomposition in moist environment. One dimensional XPS imaging was also used to map out the distribution of ionic species across the electrodes. Our results show that the iodide migration among four types of perovskite films, as vividly demonstrated with moving traces in OM, varies with the I/Br ratio and the environment where the electrical field was applied. Higher bromide content and dry environment can significantly retard the halide migration, due to the enhanced stability contributed by bromide ions.
(1) Li, G.; Zhu, R.; Yang, Y. Nature Photonics 2012, 6, 153.
(2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050.
(3) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
(4) Zhao, Y.; Zhu, K. The Journal of Physical Chemistry Letters 2013, 4, 2880.
(5) Gao, P.; Gratzel, M.; Nazeeruddin, M. K. Energy & Environmental Science 2014, 7, 2448.
(6) Progress in Solid State Chemistry 1997, 25, 125.
(7) Knutson, J. L.; Martin, J. D.; Mitzi, D. B. Inorganic Chemistry 2005, 44, 4699.
(8) Zhou, X. W.; Doty, F. P.; Yang, P. 2010; Vol. 7806, p 78060E.
(9) Poglitsch, A.; Weber, D.; D., W. The Journal of Chemical Physics 1987, 87, 6373.
(10) Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew Chem Int Ed Engl 2014, 53, 9898.
(11) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat Mater 2014, 13, 897.
(12) Kang, R.; Yeo, J.-S.; Lee, H. J.; Lee, S.; Kang, M.; Myoung, N.; Yim, S.-Y.; Oh, S.-H.; Kim, D.-Y. Nano Energy 2016, 27, 175.
(13) Liang, K.; Mitzi, D. B.; Prikas, M. T. Chemistry of Materials 1998, 10, 403.
(14) Mitzi, D. B. Chemistry of Materials 2001, 13, 3283.
(15) Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G. Nat Nano 2014, 9, 927.
(16) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
(17) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Journal of the American Chemical Society 2014, 136, 622.
(18) Zhao, Y.; Nardes, A. M.; Zhu, K. Faraday Discussions 2014, 176, 301.
(19) Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. 2015, 6, 7497.
(20) Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P. E.; Kießling, J.; Köhler, A.; Vaynzof, Y.; Huettner, S. Advanced Materials 2016, 28, 2446.
(21) Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; De Bastiani, M.; Bowring, A. R.; Martino, N.; Wojciechowski, K.; McGehee, M. D.; Snaith, H. J.; Petrozza, A. Advanced Energy Materials 2015, 5, 1500962.
(22) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy & Environmental Science 2014, 7, 982.
(23) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Letters 2013, 13, 1764.
(24) Wang, C. H.; Yang, Y. W.; Fan, L. J.; Su, J. W.; Chan, S. W.; Chen, M. C. AIP Conference Proceedings 2010, 1234, 469.
(25) Tang,C. W. Applied physics letters 1986,48,183.
(26) Moser, J. Akademischer Anzeiger Nr. XVI 1887.
(27) O'regan, B.; Grfitzeli , M. Nature 1991,353,737.
(28) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
(29) https://www.nsrrc.org.tw/
(30) 林麗娟,X 光繞射原理及其應用(1994) 工業材料86 期
(31) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grӓtzel, M.; Park, N.-G. Scientific reports 2012, 2, 591.