簡易檢索 / 詳目顯示

研究生: 藍若琳
Jo-Lin Lan
論文名稱: 銀鈀合金奈米粒子之製備及其在無電鍍沉積之應用
The Study of Ag/Pd Nanoparticles and Its Application to Electroless Deposition
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 101
中文關鍵詞: 奈米粒子無電鍍銅
外文關鍵詞: nanoparticles, palladium, silver, electroless copper deposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討銀鈀奈米粒子之製備,以及其在於無電鍍銅沉積之活化催化反應。以PVP作為保護劑、甲醛當作還原劑,成功的合成出銀鈀奈米粒子。此高分子保護之銀鈀奈米粒子除了可以成功地催化無電鍍銅,並顯示出利用此活化程序製備積體電路中銅內連線之可行性。
    使用高分子型(PVP)保護劑所合成出的銀鈀奈米粒子,經由穿透式電子顯微鏡,分析奈米粒子的大小,根據紫外光光譜及X光粉末繞射儀的鑑定,可以確定製備出銀鈀合金奈米粒子。並根據電子能譜儀以硫醇官能基之鍵結、ex-situ紫外光光譜及混合電位,分析出此銀鈀奈米粒子為表面鈀成份較多的結構,且銀鈀奈米粒子合金的形式會隨著高分子保護劑PVP的含量不同而有所改變。
    在催化活性方面,利用石英晶體微天平(QCM)以及循環伏安法(CV)可知銀鈀奈米粒子的催化活性與純鈀奈米粒子及現今商用錫鈀膠體的催化活性相近。經過鍍通孔製程背光及信賴度測試,均與現今商用錫鈀膠體效果相當,且經過曝氣測試得知,銀鈀奈米粒子不會被氧氣所氧化聚集,有著可使用於水平製程應用的可能性。銀鈀奈米粒子具備著奈米合金優越的催化活性、以部分銀來代替鈀降低原料成本即可使用於水平曝氣製程等優勢。


    Ag/Pd nanoparticles stabilized by poly(vinylpyrrolidone) (PVP) have been synthesized successfully in various molar ratios. The PVP-stabilized Pd and Ag/Pd nanoparticles were found to hold strong potential to replace conventional activator Pd/Sn colloid for electroless copper deposition.
    The essential property of Pd-PVP and Ag/Pd-PVP nanoparticles will be discussed, including the TEM images for the particle sizes, the ex-situ UV-vis spectra analysis. XPS data and mixed potential for the growth mechanism of Ag/Pd nanoparticles. The catalytic activity will be measured by QCM and CV.
    The application of Pd-PVP and Ag/Pd-PVP nanoparticle is used as the activators in the PTH (plating-through-hole) process. Using Pd-PVP and Ag/Pd-PVP as activators led to poor back-light performance if SPS process in included as in the conventional practice. Adding phosphoric acid to adjust pH of the activator would improve back-light performance with SPS process for both Pd-PVP and Ag/Pd-PVP. However, the stability of Pd-PVP and Ag/Pd-PVP nanoparticles was found to be sensitive. Accordingly, in order to extend the lifetime of activators, adding appropriate additive is necessary.
    The back-light performance and the thermal stress test showed that using Ag/Pd-PVP as activators is qualified for replacing the Sn/Pd colloid. Since Ag/Pd-PVP is less subject to oxidize by aerating, and the material cost will reduce by partially replacing palladium by silver, so Ag/Pd-PVP has the potential to become a commercially competitive product.

    Abstract I 摘要 II Table of Contents III List of Figures VI List of Tables X Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Synthesis of Metal Nanoparticles 3 2.2 Bimetallic nanoparticles 5 2.3 Synthesis of Palladium nanoparticles 6 2.3.1 Protected by Ligands. 6 2.3.2 Metal Salt Reduction via Reactive Micelle as Template 7 2.3.3 Stabilized by Polymer 9 2.4 The PVP Protective Mechanism for Nanoparticles 10 2.5 Synthesis of Ag/Pd nanoparticles and its Application 12 2.5.1 PVP-Stabilized Pd and Ag/Pd System 13 2.6 PTH (Plated through hole) Process 17 2.6.1 Sn/Pd Colloid 17 2.6.2 Mechanism of Electroless Copper Deposition 21 2.7 Motive and Scope of this Thesis 25 Chapter 3 Experimental Sections 26 3.1 Materials 26 3.2 Experimental instrument 27 3.3 Principle and Measurement of Analytical Methods 28 3.3.1 Ultraviolet-Visible Absorption Spectrometry (UV-vis) 28 3.3.2 Transmission Electron Microscopy (TEM) 29 3.3.3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 30 3.3.4 Polarography 32 3.3.5 Cyclic Voltammetry (CV) 33 3.3.6 Quartz Crystal Microgravimetry (QCM) 36 3.3.7 Tafel Plots - Mixed Potential 38 3.3.8 X-ray Photoelectron Spectroscopy (XPS) 39 3.4 Preparation of Nanoparticles 41 3.5 Ag/Pd-PVP as Activators for Electroless Copper Deposition 42 3.6 Ag/Pd-PVP and Pd-PVP Activators Added with H3PO4 43 3.7 Procedure for Conventional Pd/Sn Colloidal Activator 44 3.8 The Judgment for the Back-light Performance 45 3.9 Reliably---Thermal Stress Test 46 Chpater 4 Results and Discussions 47 4.1 The Essential Properties of Ag/Pd-PVP nanoparticles 47 4.1.1 Particles Size Analysis 47 4.1.2 UV-vis Spectra Analysis 50 4.1.3 The Effect of PVP to the Ag/Pd-PVP alloy structure 56 4.2 Activity of Ag/Pd-PVP nanoparticles for Electroless Copper Deposition 65 4.2.1 Activity of Various Activators on FR-4 Substrate 65 4.2.2 Electrochemical Measurement-QCM 67 4.2.3 Electrochemical Measurement- CV 71 4.3 The Application of Ag/Pd-PVP nanoparticles 76 4.3.1 The Back-light Performance for Ag/Pd-PVP 76 4.3.2 The Effect by adding Phosphoric acid to activators 77 4.3.3 The Amount of Pd Adsorption 86 4.3.4 Reliably-Thermal Stress Test 87 4.3.5 Different precursors comprising Pd2+ ions 88 4.3.6 Adsorption Mechanism of Sn/Pd colloid and PVP-based Activators 91 Chapter 5 Conclusions 94 Chapter 6 Future Work 96 References 97

    1. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, Ch. 12 (1990).
    2. E. J. M. O’Sullivan, J. Horkans, J. R. White and J. M. Roldan, IBM J. Res. Develop., 32, 5 (1998).
    3. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, Inc., New York, Ch. 8 (1998).
    4. G. A. Ozin, Science, 271, 920 (1996).
    5. G. Schmid, Clusters and Colloids: from Theory to Application, Wiley-VCH, New York, ch. 2 (1994).
    6. S. W. Han, Y. Kim and K. Kim, J. Colloid Interface Sci., 208, 272 (1998).
    7. N. Toshima, T. Yonezawa and K. Kushihashi, J. Chem. Soc., Faraday Trans., 89, 2537 (1993).
    8. N. Toshima, M. Harada, Y. Yamazaki and K. Asakura, J. Phys. Chem., 96, 9927 (1992).
    9. M. B. Thathagar, J. Beckers and G. Rothenberg, J. Am. Chem. Soc., 124, 11858 (2002).
    10. N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998).
    11. C. L. Lee, Y. Y. Wang and C. C. Wan, J. Electrochem.Soc., 150, C125 (2003).
    12. P-Y Silver, V. Vijayakrishnan, P. Vibert, R. H. Urina and K. T. Elhsissen, Nanostruct Mater., 7, 611 (1996).
    13. K. Torigoe and K. Esumi, Langmuir, 9, 1664 (1993).
    14. 呂英治, 洪敏雄, “奈米材料及製程介紹”, 科儀新知, 22(6), 21(2001).
    15. M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 116, 7401 (1994).
    16. N. A. Dhas and A. Gedanken, J. Mater. Chem., 8, 445 (1998).
    17. H. Bönnemann and R. M. Richards, Eur. J. Inorg. Chem., 10, 2455 (2001).
    18. 莊達人, “錫鈀膠體(Ⅱ)”, 電路板資訊, 57, 46 (1993).
    19. C. C. Yang, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc.,152, C96(2005).
    20. Radha Narayanan and Mostafa A. El-Sayed, J. Am. Chem. Soc., 125, 8340-8347 (2003).
    21. G. Schmid and L. F. Chi, Adv. Mater., 10, 515 (1998).
    22. J. Tanori, M. P. Pileni, Langmuir, 13, 639-646 (1997).
    23. D. H. Chen, C. C. Wang and T. C. Huang, J. Colloid Interface Sci., 210 123-129 (1999).
    24. Jun Lon, Weilie Zhou and Charles J. O’Connor, Materials Letters, 49, 282-286 (2001).
    25. J. H. Sinfelt, Acc. Chem. Res., 20, 134 (1982).
    26. Naoki Toshima, Y. Wang, Chem. Lett., 729 (1996).
    27. Naoki Toshima, Y. Wang, Langmuir, 10, 4574 (1994).
    28. J. Turkevich and G. Kim, Science, 169, 873 (1970).
    29. T. Yonezawa, K. Imamura and N. Kimizuka, Langmuir, 17, 4701 (2001).
    30. D. E. Cliffel, F. P. Zamborini, S. M. Gross and R. W. Murray, Langmuir, 16, 9699 (2000).
    31. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara and H. Nishihara, Langmuir, 18, 1413 (2002).
    32. L. Lu, H. Wang, S. Xi and H. Zhang, J. Mater. Chem., 12, 156 (2002).
    33. A. Taleb, C. Petit and M. P. Pileni, Chem. Mater., 9, 950 (1997).
    34. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia and L. Reven, Langmuir, 12, 1262 (1996).
    35. K. Naka, M. Yaguchi and Y. Chujo, Chem. Mater, 11, 849 (1999).
    36. H. P. Choo, K. Y. Liew and H. Liu, J. Mater. Chem., 12, 934 (2002).
    37. T. Teranishi and M. Miyake, Chem. Mater., 10, 594 (1998).
    38. C. Lee, C. C. Wan and Y. Y. Wang, Adv. Funct. Mater, 11, 344 (2000).
    39. H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1998).
    40. Z. Zhang, B Zhao and L. Hu, Journal of Solid State Chemistry, 121,105-110 (1996).
    41. K. Manzoor, S. R. Vadera, N.Kumar and T. R. N. Kutty, Solid State Communications, 129, 469-473 (2004).
    42. H. Hirai, N. Yakura, Polym. Adv. Technol., 12, 724-733 (2001).
    43. Thiele H, von Levern HS, J. Colloid Sci., 20, 679 (1965).
    44. K. S. Chou and C. Y. Ren, Mater. Chem. Phys., 64, 241 (2000).
    45. F. Bertoux, E. Monflier, Y. Castanet and A. Mortreux, J. Molecular Catal. A: Chemical, 143, 23 (1999).
    46. P-Y Silver, V. Vijayakrishnan, P. Vibert, R. H. Urina and K. T. Elhsissen, Nanostruct Mater., 7, 611 (1996).
    47. R. M. Lukes, Plating, 51, 1066 (1964).
    48. C. C. Yang, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc., 153, J27 (2006).
    49. M. L. Wu, D. H. Chen and T. C. Huang, Langmuir, 17, 3877 (2001).
    50. R. Shipley, U. S. Patent No.3, 001,920 (1961).
    51. M. Paunovic, Modern Electroplating, 4th ed., p.645, The Electrochemical Society, New Jersey (2000).
    52. Perminder Bindra et al., IBM J. RES. DEVELOP,28,679-689 (1984).
    53. J. M. O’Sullivan et al., IBM J. RES. DEVELOP, 32, 591-602 (1988).
    54. Perminder Bindra et al., IBM J. RES. DEVELOP,28,668-678 (1984).
    55. http://www.kitco.com/
    56. http://en.wikipedia.org/wiki/Transmission_electron_microscopy
    57. http://en.wikipedia.org/wiki/ICP-MS
    58. Louis Meites, “Handbook of Analytical Chemistry”, McGraw Hill Book Company (1963).
    59. Louis Meites, “Polarographic Techniques”, Inter-science Publishers (1955).
    60. Allen J. Bard, “Electroanalytical Chemistry”, Marcel Dekker, Inc., New York (1966).
    61. D. A. Buttry, Electroanal. Chem., 17, 1 (1991).
    62. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p6, Physical Electronics, America (1995).
    63. K. S. Chou, Y. S. Lai, Materials Chemistry and Physics., 83, 82(2004).
    64. T. Teranishi and M. Miyake, Chem. Mater., 11, 3414 (1999).
    65. Young-Min Chung, Hyun-Ku Rhee, J. Colloid Interface Sci. 271,131(2004).
    66. H. Liu, G. Mao, S. Meng, J. Mol. Catal., 74, 275(1992).
    67. Y. Wang and H. Liu, polym. Bull., 25, 139 (1991).
    68. N. Feldstein and J. A. Weiner, J. Electrochem. Soc., 120, 475 (1973).
    69. C. H. Yang, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc., 143, 3521 (1996).
    70. Hidefumi Hirai and Noboru Yakura, Polymers for advanced technologies, 12, 724 (2001).
    71. Algirdas Vaskelis et al., Electrochimica Acta, 50, 4586 (2005).
    72. 彭超,碩士論文,國立清華大學,中華民國台灣 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE