簡易檢索 / 詳目顯示

研究生: 白佳玉
Bai, Chia-Yu
論文名稱: 觀察軸突生長錐上類似高爾基體結構之研究
A study of observing Golgi apparatus-like structure in axonal growth cone
指導教授: 張兗君
Chang, Yen-Chung
口試委員: 袁俊傑
Yuan, Chiun-Jye
鄭美雲
Cheng, Mei-Yun
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 39
中文關鍵詞: 高爾基體軸突生長錐內質網
外文關鍵詞: Golgi, GM130, Calreticulin, TGN38
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軸突上的局部蛋白質合成對於軸突生長、方向引導與突觸建立都扮演著重要的角色,但是軸突上是否具有可以修飾和運送蛋白的高爾基體一直受到長時間的質疑。雖然早期的微結構研究表示軸突沒有高爾基體,但是透過蛋白質體學和生化的分析,在軸突上發現許多和高爾基體相關的蛋白,這樣的證據間接顯示了軸突可能具有高爾基體或是具有類似於細胞本體觀察到的高爾基體結構。在本篇研究中,我們在玻璃圓玻片上培養大鼠皮質神經元,並利用poly-L-lysine壓印出本實驗室設計的微接觸壓印圖案,使用經過處理後的玻片使我們可以更容易觀察到軸突和軸突生長錐。利用免疫螢光染色的方式偵測軸突生長錐上Golgi marker的螢光反應,透過觀察染色結果發現神經細胞與軸突生長錐上的高爾基體的染色型態差異。在共定位分析的實驗中,我們發現生長錐上的高爾基體標記物和內質網之間並沒有顯著的共定位,另外也比較近端和遠端高爾基體標記物的分佈情形,得到的結果是一致的。此外,我們無法確定高爾基體蛋白的染色是否和微管或F-肌動蛋白有關。本研究得到的結果初步確認了軸突生長錐上高爾基體蛋白的存在,並且高爾基體蛋白的分布不同於細胞本體中的結果。未來可以進一步去探討軸突高爾基體的功能,也有助於在電子顯微鏡中觀察軸突高爾基體的結構。


    Local protein synthesis in the axon participates in axonal growth and guidance and synaptic connection establishment. Whether the Golgi apparatus exist in the axon for local protein maturation has been an unanswered questioned thus far. While ultrastructural studies suggest that axons do not have Golgi apparatus, many Golgi-related proteins were found on axons by proteomic and biochemical analysis of axon. These results suggests that axons may have a Golgi apparatus, or a structure equivalent to the Golgi apparapus as that observed in the cell body. In this study, I grew rat cortical neurons on glass coverslips with a poly-L-lysine-coated micropattern use made by microcontact printing on the surface. The use of these glass coverslips allows me to observe axons and axonal growth cones easily. Immunofluorescence staining axonal growth cones using antibodies to well-characterized Golgi markers was conducted here. I observed different immunostaining patterns of these Golgi markers in the cell body and axonal growth cones. By colocalization analyses, I found that there is no significant colocalization between the immunoreactivity of the markers of Golgi apparatus and the endoplasmic reticulum in the growth cone. Furthermore, I could not ascertain whether the immunostaining of Golgi protein is associated with microtubules or F-actin. My results that the axonal growth cones contain Golgi proteins and that the distribution of Golgi proteins is unlike that of their distribution in the cell body existence of the Golgi apparatus-like structure in the axonal growth cone. In the future, it will be of interest to study the structure of the Golgi apparatus-like structure in the axon by electron microscopye.

    壹、序論 1 貳、實驗材料與方法 6 一、實驗材料 6 (一)實驗動物 6 (二)藥品 6 (三)實驗儀器 7 二、實驗方法 8 (一)微接觸壓印的設計與製作 8 (二)初代皮質神經細胞培養 10 (三)免疫螢光染色 11 (四)Airyscan 11 (五)圖片分析 12 參、實驗結果 13 一、抗體專一性之驗證 13 二、神經細胞與軸突生長錐中高爾基體的型態 13 三、生長錐中內質網蛋白和高爾基體蛋白的分佈情形 14 四、遠端高爾基體蛋白在生長錐中的分佈情形 15 五、生長錐中高爾基體蛋白和細胞骨架之間的分布情形 15 肆、討論 17 一、軸突上高爾基體可能扮演的角色 17 二、軸突生長錐上高爾基體與細胞骨架之間的關係 18 三、結語與未來展望 19 伍、圖表 21 圖一、抗體專一性之驗證 22 圖二、透過免疫螢光染色標記細胞本體的高爾基體蛋白 24 圖三、透過免疫螢光染色標記軸突生長錐的高爾基體蛋白 25 圖四、近端高爾基體蛋白和內質網蛋白在生長錐上的共定位分析 26 圖五、遠端高爾基體蛋白和內質網蛋白在生長錐上的共定位分析 29 圖六、高爾基體蛋白和細胞骨架的共定位 31 圖七、AIYSCAN成像效果比較 32 表一、神經細胞觀察數量及培養次數 33 柒、參考文獻 34 陸、附件 39 附件一、微接觸壓印裝置說明 39

    Ahmad, F. J., Echeverri, C. J., Vallee, R. B., & Baas, P. W. (1998). Cytoplasmic Dynein and Dynactin Are Required for the Transport of Microtubules into the Axon. The Journal of Cell Biology, 140(2), 391-401.
    Alvarez, J., Giuditta, A., & Koenig, E. (2000). Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. Progress in Neurobiology, 62(1), 1-62.
    Baruah, P., Dumitriu, I. E., Malik, T. H., Cook, H. T., Dyson, J., Scott, D., . . . Botto, M. (2009). C1q enhances IFN-gamma production by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells. Blood, 113(15), 3485-3493.
    Brittis, P. A., Lu, Q., & Flanagan, J. G. (2002). Axonal Protein Synthesis Provides a Mechanism for Localized Regulation at an Intermediate Target. Cell, 110(2), 223-235.
    Chuang, C. F., King, C. E., Ho, B. W., Chien, K. Y., & Chang, Y. C. (2018). Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res, 17(5), 1953-1966.
    Dailey, M. E., & Bridgman, P. C. (1991). Structure and organization of membrane organelles along distal microtubule segments in growth cones. J Neurosci Res, 30(1), 242-258.
    De Pace, R., Skirzewski, M., Damme, M., Mattera, R., Mercurio, J., Foster, A. M., . . . Bonifacino, J. S. (2018). Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet, 14(4), e1007363.
    Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W., & Kalil, K. (1999). Reorganization and Movement of Microtubules in Axonal Growth Cones and Developing Interstitial Branches. The Journal of Neuroscience, 19(20), 8894-8908.
    Dent, E. W., & Gertler, F. B. (2003). Cytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance. Neuron, 40(2), 209-227.
    Dent, E. W., & Kalil, K. (2001). Axon Branching Requires Interactions between Dynamic Microtubules and Actin Filaments. The Journal of Neuroscience, 21(24), 9757-9769.
    Dunlop, M. H., Ernst, A. M., Schroeder, L. K., Toomre, D. K., Lavieu, G., & Rothman, J. E. (2017). Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun, 8(1), 432.
    Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P. M., Andreyeva, N., . . . Kaverina, I. (2007). Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell, 12(6), 917-930.
    Estrada-Bernal, A., Sanford, S. D., Sosa, L. J., Simon, G. C., Hansen, K. C., & Pfenninger, K. H. (2012). Functional complexity of the axonal growth cone: a proteomic analysis. PLoS One, 7(2), e31858.
    Fan, S. H., Numata, Y., & Numata, M. (2016). Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell, 27(4), 702-715.
    Ghezali, G., Calvo, C. F., Pillet, L. E., Llense, F., Ezan, P., Pannasch, U., . . . Rouach, N. (2018). Connexin 30 controls astroglial polarization during postnatal brain development. Development, 145(4).
    Gilchrist, A., Au, C. E., Hiding, J., Bell, A. W., Fernandez-Rodriguez, J., Lesimple, S., . . . Bergeron, J. J. (2006). Quantitative proteomics analysis of the secretory pathway. Cell, 127(6), 1265-1281.
    Giuditta, A., Cupellot, A., & Lazzarini, G. (1980). Ribosomal RNA in the Axoplasm of the Squid Giant Axon. Journal of Neurochemistry, 34(6), 1757-1760.
    Han, F., Liu, C., Zhang, L., Chen, M., Zhou, Y., Qin, Y., . . . Gao, F. (2017). Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis, 8(1), e2532.
    Horton, A. C., & Ehlers, M. D. (2003). Dual Modes of Endoplasmic Reticulum-to-Golgi Transport in Dendrites Revealed by Live-Cell Imaging. The Journal of Neuroscience, 23(15), 6188-6199.
    Horton, A. C., Racz, B., Monson, E. E., Lin, A. L., Weinberg, R. J., & Ehlers, M. D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron, 48(5), 757-771.
    Huang, T. Y., Zhao, Y., Li, X., Wang, X., Tseng, I. C., Thompson, R., . . . Xu, H. (2016). SNX27 and SORLA Interact to Reduce Amyloidogenic Subcellular Distribution and Processing of Amyloid Precursor Protein. J Neurosci, 36(30), 7996-8011.
    Islam, M. A., Sharif, S. R., Lee, H., & Moon, I. S. (2015). N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells, 38(10), 876-885.
    Jareb, M., & Banker, G. (1997). Inhibition of Axonal Growth by Brefeldin A in Hippocampal Neurons in Culture. The Journal of Neuroscience, 17(23), 8955-8963.
    Jung, H., Yoon, B. C., & Holt, C. E. (2012). Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci, 13(5), 308-324.
    Katoh, Y., Ritter, B., Gaffry, T., Blondeau, F., Honing, S., & McPherson, P. S. (2009). The clavesin family, neuron-specific lipid- and clathrin-binding Sec14 proteins regulating lysosomal morphology. J Biol Chem, 284(40), 27646-27654.
    Kimura, N., Inoue, M., Okabayashi, S., Ono, F., & Negishi, T. (2009). Dynein dysfunction induces endocytic pathology accompanied by an increase in Rab GTPases: a potential mechanism underlying age-dependent endocytic dysfunction. J Biol Chem, 284(45), 31291-31302.
    Knowles, R. B., Sabry, J. H., Martone, M. E., Deerinck, T. J., Ellisman, M. H., Bassell, G. J., & Kosik, K. S. (1996). Translocation of RNA Granules in Living Neurons. The Journal of Neuroscience, 16(24), 7812-7820.
    Knox, C. D., Belous, A. E., Pierce, J. M., Wakata, A., Nicoud, I. B., Anderson, C. D., . . . Chari, R. S. (2004). Novel role of phospholipase C-delta1: regulation of liver mitochondrial Ca2+ uptake. Am J Physiol Gastrointest Liver Physiol, 287(3), G533-540.
    Lasek, R. J., Dabrowski, C., & Nordlander, R. (1973). Analysis of Axoplasmic RNA from Invertebrate Giant Axons. Nature New Biology, 244(136), 162-165.
    Lewis, M. K., Jamison, J. T., Dunbar, J. C., & DeGracia, D. J. (2013). mRNA redistribution during permanent focal cerebral ischemia. Transl Stroke Res, 4(6), 604-617.
    Lowery, L. A., & Van Vactor, D. (2009). The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol, 10(5), 332-343.
    Luo, X., Weber, G. A., Zheng, J., Gendelman, H. E., & Ikezu, T. (2003). C1q–calreticulin induced oxidative neurotoxicity: relevance for the neuropathogenesis of Alzheimer's disease. Journal of Neuroimmunology, 135(1-2), 62-71.
    Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Ivessa, A., . . . Sadoshima, J. (2013). Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med, 19(11), 1478-1488.
    Martin, K. C. (2004). Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol, 14(3), 305-310.
    Merianda, T. T., Lin, A. C., Lam, J. S., Vuppalanchi, D., Willis, D. E., Karin, N., . . . Twiss, J. L. (2009). A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol Cell Neurosci, 40(2), 128-142.
    Nakamura, N. (1995). Characterization of a cis-Golgi matrix protein, GM130. The Journal of Cell Biology, 131(6), 1715-1726.
    Olesen, S. H., Christensen, L. L., Sorensen, F. B., Cabezon, T., Laurberg, S., Orntoft, T. F., & Birkenkamp-Demtroder, K. (2005). Human FK506 binding protein 65 is associated with colorectal cancer. Mol Cell Proteomics, 4(4), 534-544.
    Pierce, J. P., Mayer, T., & McCarthy, J. B. (2001). Evidence for a satellite secretory pathway in neuronal dendritic spines. Current Biology, 11(5), 351-355.
    Piper, M., Anderson, R., Dwivedy, A., Weinl, C., van Horck, F., Leung, K. M., . . . Holt, C. (2006). Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron, 49(2), 215-228.
    Quassollo, G., Wojnacki, J., Salas, D. A., Gastaldi, L., Marzolo, M. P., Conde, C., . . . Caceres, A. (2015). A RhoA Signaling Pathway Regulates Dendritic Golgi Outpost Formation. Curr Biol, 25(8), 971-982.
    Revelo, N. H., Kamin, D., Truckenbrodt, S., Wong, A. B., Reuter-Jessen, K., Reisinger, E., . . . Rizzoli, S. O. (2014). A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J Cell Biol, 205(4), 591-606.
    Schmitt, D., Funk, N., Blum, R., Asan, E., Andersen, L., Rulicke, T., . . . Buchner, E. (2016). Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol, 146(4), 489-512.
    Stephens, S. B., Edwards, R. J., Sadahiro, M., Lin, W. J., Jiang, C., Salton, S. R., & Newgard, C. B. (2017). The Prohormone VGF Regulates beta Cell Function via Insulin Secretory Granule Biogenesis. Cell Rep, 20(10), 2480-2489.
    Steward, O. (1997). mRNA Localization in Neurons: A Multipurpose Mechanism? Neuron, 18(1), 9-12.
    Steward, O., & Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. The Journal of Neuroscience, 2(3), 284-291.
    Stiess, M., Maghelli, N., Kapitein, L. C., Gomis-Ruth, S., Wilsch-Brauninger, M., Hoogenraad, C. C., . . . Bradke, F. (2010). Axon extension occurs independently of centrosomal microtubule nucleation. Science, 327(5966), 704-707.
    Takatalo, M. S., Kouvonen, P., Corthals, G., Nyman, T. A., & Ronnholm, R. H. (2006). Identification of new Golgi complex specific proteins by direct organelle proteomic analysis. Proteomics, 6(12), 3502-3508.
    Thayer, D. A., Jan, Y. N., & Jan, L. Y. (2013). Increased neuronal activity fragments the Golgi complex. Proc Natl Acad Sci U S A, 110(4), 1482-1487.
    Torre, E. R., & Steward, O. (1996). Protein Synthesis within Dendrites: Glycosylation of Newly Synthesized Proteins in Dendrites of Hippocampal Neurons in Culture. The Journal of Neuroscience, 16(19), 5967-5978.
    Tsukita, S., & Ishikawa, H. (1979). Morphological evidence for the involvement of the smooth endoplasmic reticulum in axonal transport. Brain Research, 174(2), 315-318.
    Uliana, A. S., Giraudo, C. G., & Maccioni, H. J. (2006). Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic, 7(5), 604-612.
    Wang, C., Wang, Y., Hu, M., Chai, Z., Wu, Q., Huang, R., . . . Zhou, Z. (2016). Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep, 17(1), 47-63.
    Wang, L., & Brown, A. (2002). Rapid Movement of Microtubules in Axons. Current Biology, 12(17), 1496-1501.
    Willis, D., Li, K. W., Zheng, J. Q., Chang, J. H., Smit, A. B., Kelly, T., . . . Twiss, J. L. (2005). Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci, 25(4), 778-791.
    Willis, D. E., van Niekerk, E. A., Sasaki, Y., Mesngon, M., Merianda, T. T., Williams, G. G., . . . Twiss, J. L. (2007). Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol, 178(6), 965-980.
    Woods, A. J., Roberts, M. S., Choudhary, J., Barry, S. T., Mazaki, Y., Sabe, H., . . . Norman, J. C. (2002). Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J Biol Chem, 277(8), 6428-6437.
    Wu, C. C., MacCoss, M. J., Mardones, G., Finnigan, C., Mogelsvang, S., Yates, J. R., 3rd, & Howell, K. E. (2004). Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell, 15(6), 2907-2919.
    Wu, H. I., Cheng, G. H., Wong, Y. Y., Lin, C. M., Fang, W., Chow, W. Y., & Chang, Y. C. (2010). A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip, 10(5), 647-653.
    Yamada, H. Y., Kumar, G., Zhang, Y., Rubin, E., Lightfoot, S., Dai, W., & Rao, C. V. (2016). Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung. Oncogenesis, 5(8), e256.
    Yap, C. C., Digilio, L., McMahon, L., & Winckler, B. (2017). The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. Sci Rep, 7(1), 10481.
    Zhou, M., Tanaka, O., Sekiguchi, M., He, H. J., Yasuoka, Y., Itoh, H., . . . Abe, H. (2005). ATP-sensitive K+-channel subunits on the mitochondria and endoplasmic reticulum of rat cardiomyocytes. J Histochem Cytochem, 53(12), 1491-1500.

    QR CODE